1,056 research outputs found

    The Energetics of Ion-Pair and Hydrogen-Bonding Interactions in a Helical Peptide

    Get PDF
    A single pair of Glu and Lys residues has been placed at four different spacings, and in both orientations, in an otherwise neutral alanineglutamine peptide helix, and the contribution to helix stability of the different Glu-Lys interactions has been measured. The contribution from the interaction of each charged side chain with the helix macrodipole has also been determined. A side-chain interaction between Gln and Glu, when the spacing is (i, i+4), has been detected and quantified. The interactions have been divided into contributions from hydrogen bonds (independent of the concentration of NaC1) and from electrostatic interactions (present in 10 mM NaCl, absent in 2.5 M NaCl). The major results are as follows: (1) The (i, i+3) and (i, i+4) Glu-Lys interactions are helix-stabilizing and are similar in strength to each other, regardless of the orientation of the side chains. (2) Hydrogen bonds provide the major contribution to these side-chain interactions, as shown by the following facts. First, the major part of the interaction observed in 10 mM NaCl, pH 7, is still present in 2.5 M NaCl. Second, the interaction found at pH 2 is equally as strong as that found in 2.5 M NaCl at pH 7. (3) The (i, i+4) Gln-Glu side-chain hydrogen bond is as strong as the hydrogen-bond component of the Glu-Lys interaction at both pH 2 and pH 7. The Gln-Glu interaction differs from the Glu-Lys interaction in being specific both for the orientation and the spacing of the residues. (4) No significant hydrogen-bonding interaction was found for the (i, i+1) or (i, i+2) Glu-Lys spacings, either at pH 2 or at pH 7, in 2.5 M NaCl. At 10 mM NaCl and pH 7, these spacings show a helix-destabilizing electrostatic interaction which probably results from stabilization of the coil conformation

    Auditory In-Vehicle Technologies to Support Older Drivers

    Get PDF
    OBJECTIVES Population aging, in combination with improved health care and more active lifestyles well into advanced age, have resulted in an increased number of older adults driving more miles than ever before. Unfortunately, these older drivers are over-represented in motor vehicle crashes and crash-related fatalities. Rather than the risk-tasking behaviors observed in young drivers, the collisions of older drivers frequently involve perceptual-cognitive errors. Advanced in-vehicle technologies have the potential to function as sensory-cognitive aids and may offset the negative impact of age-related changes in sensory and cognitive abilities. Collision Avoidance Systems (CASs) function as sensory aids to augment hazard detection capabilities, and therefore may be of particular benefit to older drivers. Navigation aids can offset the working memory requirements of wayfinding, and auditory guidance directions may reduce the visual demands of searching for street signs and reading maps. However, these advanced systems also have the potential to increase the information processing demands of the driving task or distract drivers, particularly if they are not designed in accordance with the sensory and perceptual capabilities of older adults. A series of experiments aimed at examining the impact of sensory-cognitive characteristics of auditory navigational aids on driver wayfinding, performance on a visual peripheral detection task, and neurophysiological, behavioral and subjective indices of driver mental workload and performance were conducted. METHODS Results of two investigations will be discussed. The first investigation examined the impact of amplitude level on working memory. Older adults frequently exhibit reduced complex working memory span. However, recent evidence indicates that increasing a sound’s amplitude increases its duration in echoic memory (Baldwin, in press). Based on these findings, we hypothesized that increasing the amplitude of verbal material would improve working memory efficiency. RESULTS In support of this hypothesis, a strong positive correlation between the amplitude level at which the verbal material was presented and complex working memory span as measured by a version of Daneman and Carpenter’s (1980) Listening span task was observed. This positive relationship OBJECTIVES Population aging, in combination with improved health care and more active lifestyles well into advanced age, have resulted in an increased number of older adults driving more miles than ever before. Unfortunately, these older drivers are over-represented in motor vehicle crashes and crash-related fatalities. Rather than the risk-tasking behaviors observed in young drivers, the collisions of older drivers frequently involve perceptual-cognitive errors. Advanced in-vehicle technologies have the potential to function as sensory-cognitive aids and may offset the negative impact of age-related changes in sensory and cognitive abilities. Collision Avoidance Systems (CASs) function as sensory aids to augment hazard detection capabilities, and therefore may be of particular benefit to older drivers. Navigation aids can offset the working memory requirements of wayfinding, and auditory guidance directions may reduce the visual demands of searching for street signs and reading maps. However, these advanced systems also have the potential to increase the information processing demands of the driving task or distract drivers, particularly if they are not designed in accordance with the sensory and perceptual capabilities of older adults. A series of experiments aimed at examining the impact of sensory-cognitive characteristics of auditory navigational aids on driver wayfinding, performance on a visual peripheral detection task, and neurophysiological, behavioral and subjective indices of driver mental workload and performance were conducted. METHODS Results of two investigations will be discussed. The first investigation examined the impact of amplitude level on working memory. Older adults frequently exhibit reduced complex working memory span. However, recent evidence indicates that increasing a sound’s amplitude increases its duration in echoic memory (Baldwin, in press). Based on these findings, we hypothesized that increasing the amplitude of verbal material would improve working memory efficiency. RESULTS In support of this hypothesis, a strong positive correlation between the amplitude level at which the verbal material was presented and complex working memory span as measured by a version of Daneman and Carpenter’s (1980) Listening span task was observed. This positive relationshi

    Lopsided Galaxies, Weak Interactions and Boosting the Star Formation Rate

    Full text link
    To investigate the link between weak tidal interactions in disk galaxies and the boosting of their recent star formation, we obtain images and spatially integrated spectra (3615A < lambda < 5315A) for 40 late-type spiral galaxies (Sab-Sbc) with varying degrees of lopsidedness (a dynamical indicator of weak interactions). We quantify lopsidedness as the amplitude of the m=1 Fourier component of the azimuthal surface brightness distribution, averaged over a range of radii. We compare the young stellar content, quantified by EW(H\delta_abs) and the strength of the 4000 Angstrom break (D_4000), with lopsidedness and find a 3-4 sigma correlation between the two. We also find a 3.2 sigma correlation between EW(H\beta_emission) and lopsidedness. Using the evolutionary population synthesis code of Bruzual & Charlot we model the spectra as an ``underlying population'' and a superimposed ``boost population'' with the aim of constraining the fractional boost in the SFR averaged over the past 0.5 Gyr (the characteristic lifetime of lopsidedness). From the difference in both EW(H\delta_abs) and D_4000 between the most and least symmetric thirds of our sample, we infer that ~ 1x10^9 M_solar of stars are formed over the duration of a lopsided event in addition to the ``underlying'' SFH (assuming a final galactic stellar mass of 10^10 M_solar). This corresponds to a factor of 8 increase in the SFR over the past 5x10^8 years. For the nuclear spectra, all of the above correlations except D_4000 vs. are weaker than for the disk, indicating that in lopsided galaxies, the SF boost is not dominated by the nucleus.Comment: 35 pages, including 10 figures, to appear in the Astrophysical Journal, abridged abstrac

    The First Comprehensive Photometric Study of the Algol-type System CL Aurigae

    Full text link
    We present the first extensive photometric results of CL Aur from our BVRI CCD photometry made on 22 nights from 2003 November through 2005 February. Fifteen new timings of minimum light were obtained. During the past 104 years, the orbital period has varied due to a periodic oscillation superposed on a continuous period increase. The period and semi-amplitude of the oscillation are about 21.6 yrs and 0.0133 d, respectively. This detail is interpreted as a light-travel-time effect due to a low-luminosity K-type star gravitationally bound to the CL Aur close system. Our photometric study indicates that CL Aur is a relatively short-period Algol-type binary with values of q=0.602 and i=88^\circ.2. Mass transfer from the secondary to the primary eclipsing component is at least partly responsible for the observed secular period change with a rate of dP/dt = +1.4×107\times10^{-7} d yr1^{-1}. A cool spot model has been calculated but we think that an alternative hot-spot model resulting from a gas stream impact on the hot star is more reasonable despite two difficulties with the explanation. Absolute dimensions of the eclipsing system are deduced and its present state is compared with tracks for single star and conservative close binary evolution. Finally, we examine the possible reconciliation of two different calculations of the luminosity of the hot spot and a re-interpretation of the secular term of the period variability.Comment: 26 pages, including 5 figures and 9 tables, accepted for publication in A

    The influence of defined ante-mortem stressors on the early post-mortem biochemical processes in the abdominal muscle of the Norway lobster, Nephrops norvegicus (Linnaeus, 1758)

    Get PDF
    The effects of four different ante-mortem stressors (exercise, emersion, starvation and a patent infection with the parasite Hematodinium sp.) on post-mortem processes have been investigated in the abdominal muscle of Norway lobster Nephrops norvegicus by measuring changes in the pH, the levels of glycogen, l-lactate, arginine phosphate, ATP, ADP, AMP, IMP, HxR, Hx and the adenylate energy charge (AEC) over a time course of 24 h with samples being taken at 0, 3, 6, 12 and 24 h. The acute stresses of intense exercise and 2 h emersion resulted in a premature onset of anaerobic glycolysis, leading both to an enhanced glycogen depletion rate and an early accumulation of l-lactate. The chronic stressors, starvation and parasite infection, resulted in a complete ante-mortem depletion of muscle glycogen and consequently the failure of post-mortem glycolytic fermentation. Post-mortem pH and ATP inter-conversion were significantly altered in chronically stressed animals. Ante-mortem, a rapid, almost complete depletion of arginine phosphate was observed in all stress groups. The AEC was altered significantly by all stresses, indicating a strong energy demand. The findings suggest that ante-mortem stressors strongly influence the post-mortem biochemical processes. The laboratory-based results are compared to 'field' data and effects on post-harvest product quality are discussed

    The Energetics of Ion-Pair and Hydrogen-Bonding Interactions in a Helical Peptide

    Get PDF
    A single pair of Glu and Lys residues has been placed at four different spacings, and in both orientations, in an otherwise neutral alanineglutamine peptide helix, and the contribution to helix stability of the different Glu-Lys interactions has been measured. The contribution from the interaction of each charged side chain with the helix macrodipole has also been determined. A side-chain interaction between Gln and Glu, when the spacing is (i, i+4), has been detected and quantified. The interactions have been divided into contributions from hydrogen bonds (independent of the concentration of NaC1) and from electrostatic interactions (present in 10 mM NaCl, absent in 2.5 M NaCl). The major results are as follows: (1) The (i, i+3) and (i, i+4) Glu-Lys interactions are helix-stabilizing and are similar in strength to each other, regardless of the orientation of the side chains. (2) Hydrogen bonds provide the major contribution to these side-chain interactions, as shown by the following facts. First, the major part of the interaction observed in 10 mM NaCl, pH 7, is still present in 2.5 M NaCl. Second, the interaction found at pH 2 is equally as strong as that found in 2.5 M NaCl at pH 7. (3) The (i, i+4) Gln-Glu side-chain hydrogen bond is as strong as the hydrogen-bond component of the Glu-Lys interaction at both pH 2 and pH 7. The Gln-Glu interaction differs from the Glu-Lys interaction in being specific both for the orientation and the spacing of the residues. (4) No significant hydrogen-bonding interaction was found for the (i, i+1) or (i, i+2) Glu-Lys spacings, either at pH 2 or at pH 7, in 2.5 M NaCl. At 10 mM NaCl and pH 7, these spacings show a helix-destabilizing electrostatic interaction which probably results from stabilization of the coil conformation

    A psychophysical performance-based approach to the quality assessment of image processing algorithms

    Get PDF
    Image processing algorithms are used to improve digital image representations in either their appearance or storage efficiency. The merit of these algorithms depends, in part, on visual perception by human observers. However, in practice, most are assessed numerically, and the perceptual metrics that do exist are criterion sensitive with several shortcomings. Here we propose an objective performance-based perceptual measure of image quality and demonstrate this by comparing the efficacy of a denoising algorithm for a variety of filters. For baseline, we measured detection thresholds for a white noise signal added to one of a pair of natural images in a two-alternative forced-choice (2AFC) paradigm where each image was selected randomly from a set of n = 308 on each trial. In a series of experimental conditions, the stimulus image pairs were passed through various configurations of a denoising algorithm. The differences in noise detection thresholds with and without denoising are objective perceptual measures of the ability of the algorithm to render noise invisible. This was a factor of two (6dB) in our experiment and consistent across a range of filter bandwidths and types. We also found that thresholds in all conditions converged on a common value of PSNR, offering support for this metric. We discuss how the 2AFC approach might be used for other algorithms including compression, deblurring and edge-detection. Finally, we provide a derivation for our Cartesian-separable log-Gabor filters, with polar parameters. For the biological vision community this has some advantages over the more typical (i) polar-separable variety and (ii) Cartesian-separable variety with Cartesian parameters
    corecore