740 research outputs found
Investigation of the complex dynamics and regime control in Pierce diode with the delay feedback
In this paper the dynamics of Pierce diode with overcritical current under
the influence of delay feedback is investigated. The system without feedback
demonstrates complex behaviour including chaotic regimes. The possibility of
oscillation regime control depending on the delay feedback parameter values is
shown. Also the paper describes construction of a finite-dimensional model of
electron beam behaviour, which is based on the Galerkin approximation by linear
modes expansion. The dynamics of the model is close to the one given by the
distributed model.Comment: 18 pages, 6 figures, published in Int. J. Electronics. 91, 1 (2004)
1-1
Sources of Food Affect Dietary Adequacy of Inuit Women of Childbearing Age in Arctic Canada
Dietary transition in the Arctic is associated with decreased quality of diet, which is of particular concern for women of childbearing age due to the potential impact of maternal nutrition status on the next generation. The study assessed dietary intake and adequacy among Inuit women of childbearing age living in three communities in Nunavut, Canada. A culturally-appropriate quantitative food-frequency questionnaire was administered to 106 Inuit women aged 19-44 years. Sources of key foods, energy and nutrient intakes were determined; dietary adequacy was determined by comparing nutrient intakes with recommendations. The prevalence of overweight/obesity was >70%, and many consumed inadequate dietary fibre, folate, calcium, potassium, magnesium, and vitamin A, D, E, and K. Non-nutrient-dense foods were primary sources of fat, carbohydrate and sugar intakes and contributed >30% of energy. Traditional foods accounted for 21% of energy and >50% of protein and iron intakes. Strategies to improve weight status and nutrient intake are needed among Inuit women in this important life stage
Animating Through Warping: an Efficient Method for High-Quality Facial Expression Animation
Advances in deep neural networks have considerably improved the art of
animating a still image without operating in 3D domain. Whereas, prior arts can
only animate small images (typically no larger than 512x512) due to memory
limitations, difficulty of training and lack of high-resolution (HD) training
datasets, which significantly reduce their potential for applications in movie
production and interactive systems. Motivated by the idea that HD images can be
generated by adding high-frequency residuals to low-resolution results produced
by a neural network, we propose a novel framework known as Animating Through
Warping (ATW) to enable efficient animation of HD images.
Specifically, the proposed framework consists of two modules, a novel
two-stage neural-network generator and a novel post-processing module known as
Animating Through Warping (ATW). It only requires the generator to be trained
on small images and can do inference on an image of any size. During inference,
an HD input image is decomposed into a low-resolution component(128x128) and
its corresponding high-frequency residuals. The generator predicts the
low-resolution result as well as the motion field that warps the input face to
the desired status (e.g., expressions categories or action units). Finally, the
ResWarp module warps the residuals based on the motion field and adding the
warped residuals to generates the final HD results from the naively up-sampled
low-resolution results. Experiments show the effectiveness and efficiency of
our method in generating high-resolution animations. Our proposed framework
successfully animates a 4K facial image, which has never been achieved by prior
neural models. In addition, our method generally guarantee the temporal
coherency of the generated animations. Source codes will be made publicly
available.Comment: 18 pages, 13 figures, Accepted to ACM Multimedia 202
Sources of Food Affect Dietary Adequacy of Inuit Women of Childbearing Age in Arctic Canada
Dietary transition in the Arctic is associated with decreased quality
of diet, which is of particular concern for women of childbearing age
due to the potential impact of maternal nutrition status on the next
generation. The study assessed dietary intake and adequacy among Inuit
women of childbearing age living in three communities in Nunavut,
Canada. A culturally-appropriate quantitative food-frequency
questionnaire was administered to 106 Inuit women aged 19-44 years.
Sources of key foods, energy and nutrient intakes were determined;
dietary adequacy was determined by comparing nutrient intakes with
recommendations. The prevalence of overweight/obesity was >70%, and
many consumed inadequate dietary fibre, folate, calcium, potassium,
magnesium, and vitamin A, D, E, and K. Non-nutrient-dense foods were
primary sources of fat, carbohydrate and sugar intakes and contributed
>30% of energy. Traditional foods accounted for 21% of energy and
>50% of protein and iron intakes. Strategies to improve weight
status and nutrient intake are needed among Inuit women in this
important life stage
Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus
The marine cyanobacterium Prochlorococcus is the numerically dominant photosynthetic organism in the oligotrophic oceans, and a model system in marine microbial ecology. Here we report 27 new whole genome sequences (2 complete and closed; 25 of draft quality) of cultured isolates, representing five major phylogenetic clades of Prochlorococcus. The sequenced strains were isolated from diverse regions of the oceans, facilitating studies of the drivers of microbial diversity—both in the lab and in the field. To improve the utility of these genomes for comparative genomics, we also define pre-computed clusters of orthologous groups of proteins (COGs), indicating how genes are distributed among these and other publicly available Prochlorococcus genomes. These data represent a significant expansion of Prochlorococcus reference genomes that are useful for numerous applications in microbial ecology, evolution and oceanography.Gordon and Betty Moore Foundation (Grant GBMR #495.01)National Science Foundation (U.S.) (Grant OCE-1153588)National Science Foundation (U.S.) (Grant OCE-0425602)National Science Foundation (U.S.) (Grant DBI-0424599)Center for Microbial Oceanography: Research and Educatio
Gamma-ray Observations Under Bright Moonlight with VERITAS
Imaging atmospheric Cherenkov telescopes (IACTs) are equipped with sensitive
photomultiplier tube (PMT) cameras. Exposure to high levels of background
illumination degrades the efficiency of and potentially destroys these
photo-detectors over time, so IACTs cannot be operated in the same
configuration in the presence of bright moonlight as under dark skies. Since
September 2012, observations have been carried out with the VERITAS IACTs under
bright moonlight (defined as about three times the night-sky-background (NSB)
of a dark extragalactic field, typically occurring when Moon illumination >
35%) in two observing modes, firstly by reducing the voltage applied to the
PMTs and, secondly, with the addition of ultra-violet (UV) bandpass filters to
the cameras. This has allowed observations at up to about 30 times previous NSB
levels (around 80% Moon illumination), resulting in 30% more observing time
between the two modes over the course of a year. These additional observations
have already allowed for the detection of a flare from the 1ES 1727+502 and for
an observing program targeting a measurement of the cosmic-ray positron
fraction. We provide details of these new observing modes and their performance
relative to the standard VERITAS observations
Very-high-energy observations of the binaries V 404 Cyg and 4U 0115+634 during giant X-ray outbursts
Transient X-ray binaries produce major outbursts in which the X-ray flux can
increase over the quiescent level by factors as large as . The low-mass
X-ray binary V 404 Cyg and the high-mass system 4U 0115+634 underwent such
major outbursts in June and October 2015, respectively. We present here
observations at energies above hundreds of GeV with the VERITAS observatory
taken during some of the brightest X-ray activity ever observed from these
systems. No gamma-ray emission has been detected by VERITAS in 2.5 hours of
observations of the microquasar V 404 Cyg from 2015, June 20-21. The upper flux
limits derived from these observations on the gamma-ray flux above 200 GeV of F
cm s correspond to a tiny fraction (about
) of the Eddington luminosity of the system, in stark contrast to that
seen in the X-ray band. No gamma rays have been detected during observations of
4U 0115+634 in the period of major X-ray activity in October 2015. The flux
upper limit derived from our observations is F cm
s for gamma rays above 300 GeV, setting an upper limit on the ratio of
gamma-ray to X-ray luminosity of less than 4%.Comment: Accepted for publication in the Astrophysical Journa
Gamma-ray observations of Tycho's SNR with VERITAS and Fermi
High-energy gamma-ray emission from supernova remnants (SNRs) has provided a
unique perspective for studies of Galactic cosmic-ray acceleration. Tycho's SNR
is a particularly good target because it is a young, type Ia SNR that is
well-studied over a wide range of energies and located in a relatively clean
environment. Since the detection of gamma-ray emission from Tycho's SNR by
VERITAS and Fermi-LAT, there have been several theoretical models proposed to
explain its broadband emission and high-energy morphology. We report on an
update to the gamma-ray measurements of Tycho's SNR with 147 hours of VERITAS
and 84 months of Fermi-LAT observations, which represents about a factor of two
increase in exposure over previously published data. About half of the VERITAS
data benefited from a camera upgrade, which has made it possible to extend the
TeV measurements toward lower energies. The TeV spectral index measured by
VERITAS is consistent with previous results, but the expanded energy range
softens a straight power-law fit. At energies higher than 400 GeV, the
power-law index is . It
is also softer than the spectral index in the GeV energy range, , measured by this study using
Fermi--LAT data. The centroid position of the gamma-ray emission is coincident
with the center of the remnant, as well as with the centroid measurement of
Fermi--LAT above 1 GeV. The results are consistent with an SNR shell origin of
the emission, as many models assume. The updated spectrum points to a lower
maximum particle energy than has been suggested previously.Comment: Accepted for publication in The Astrophysical Journa
Direct measurement of stellar angular diameters by the VERITAS Cherenkov Telescopes
The angular size of a star is a critical factor in determining its basic
properties. Direct measurement of stellar angular diameters is difficult: at
interstellar distances stars are generally too small to resolve by any
individual imaging telescope. This fundamental limitation can be overcome by
studying the diffraction pattern in the shadow cast when an asteroid occults a
star, but only when the photometric uncertainty is smaller than the noise added
by atmospheric scintillation. Atmospheric Cherenkov telescopes used for
particle astrophysics observations have not generally been exploited for
optical astronomy due to the modest optical quality of the mirror surface.
However, their large mirror area makes them well suited for such
high-time-resolution precision photometry measurements. Here we report two
occultations of stars observed by the VERITAS Cherenkov telescopes with
millisecond sampling, from which we are able to provide a direct measurement of
the occulted stars' angular diameter at the milliarcsecond scale.
This is a resolution never achieved before with optical measurements and
represents an order of magnitude improvement over the equivalent lunar
occultation method. We compare the resulting stellar radius with empirically
derived estimates from temperature and brightness measurements, confirming the
latter can be biased for stars with ambiguous stellar classifications.Comment: Accepted for publication in Nature Astronom
Evidence for proton acceleration up to TeV energies based on VERITAS and Fermi-LAT observations of the Cas A SNR
We present a study of -ray emission from the core-collapse supernova
remnant Cas~A in the energy range from 0.1GeV to 10TeV. We used 65 hours of
VERITAS data to cover 200 GeV - 10 TeV, and 10.8 years of \textit{Fermi}-LAT
data to cover 0.1-500 GeV. The spectral analysis of \textit{Fermi}-LAT data
shows a significant spectral curvature around GeV that is
consistent with the expected spectrum from pion decay. Above this energy, the
joint spectrum from \textit{Fermi}-LAT and VERITAS deviates significantly from
a simple power-law, and is best described by a power-law with spectral index of
with a cut-off energy of TeV. These
results, along with radio, X-ray and -ray data, are interpreted in the
context of leptonic and hadronic models. Assuming a one-zone model, we exclude
a purely leptonic scenario and conclude that proton acceleration up to at least
6 TeV is required to explain the observed -ray spectrum. From modeling
of the entire multi-wavelength spectrum, a minimum magnetic field inside the
remnant of is deduced.Comment: 33 pages, 9 Figures, 6 Table
- …