3,090 research outputs found
Perceptual learning reconfigures the effects of visual adaptation
Our sensory experiences over a range of different timescales shape our perception of the environment. Two particularly striking short-term forms of plasticity with manifestly different time courses and perceptual consequences are those caused by visual adaptation and perceptual learning. Although conventionally treated as distinct forms of experience-dependent plasticity, their neural mechanisms and perceptual consequences have become increasingly blurred, raising the possibility that they might interact. To optimize our chances of finding a functionally meaningful interaction between learning and adaptation, we examined in humans the perceptual consequences of learning a fine discrimination task while adapting the neurons that carry most information for performing this task. Learning improved discriminative accuracy to a level that ultimately surpassed that in an unadapted state. This remarkable improvement came at a price: adapting directions that before learning had little effect elevated discrimination thresholds afterward. The improvements in discriminative accuracy grew quickly and surpassed unadapted levels within the first few training sessions, whereas the deterioration in discriminative accuracy had a different time course. This learned reconfiguration of adapted discriminative accuracy occurred without a concomitant change to the characteristic perceptual biases induced by adaptation, suggesting that the system was still in an adapted state. Our results point to a functionally meaningful pushāpull interaction between learning and adaptation in which a gain in sensitivity in one adapted state is balanced by a loss of sensitivity in other adapted states
SELECTING A BUSINESS MAJOR WITHIN THE COLLEGE OF BUSINESS
This study employed a survey in examining the important influences that shape a studentās selection of a major in the College of Business (COB). In particular, it compared these influences, by major, to assess which items were most (and least) important to the students majoring in accounting, general business, finance, management, marketing, and MIS. The influences, totaling 37, included internal influences (e.g., interest in the field), external influences (e.g., projected salary), and interpersonal influences (influence of significant others). Some of the findings were consistent with those of prior studies. For example, interesting work was highly important for all business majors, and specific interpersonal influences such as parents, high school teachers, and peers were relatively unimportant. The findings presented herein suggest that the overall impact of interpersonal influence may have been underestimated in previous studies. Unlike many previous studies, this study showed that job availability and job security were more important to students than interest in the field. This study augments the extant literature in that the survey was conducted right after the 2009 recession, which allowed an analysis of student decision making during a period of high unemployment and lingering economic uncertainty. Implications and suggestions for further research are discussed
Texture and shape of two-dimensional domains of nematic liquid crystal
We present a generalized approach to compute the shape and internal structure
of two-dimensional nematic domains. By using conformal mappings, we are able to
compute the director field for a given domain shape that we choose from a rich
class, which includes drops with large and small aspect ratios, and sharp
domain tips as well as smooth ones. Results are assembled in a phase diagram
that for given domain size, surface tension, anchoring strength, and elastic
constant shows the transitions from a homogeneous to a bipolar director field,
from circular to elongated droplets, and from sharp to smooth domain tips. We
find a previously unaccounted regime, where the drop is nearly circular, the
director field bipolar and the tip rounded. We also find that bicircular
director fields, with foci that lie outside the domain, provide a remarkably
accurate description of the optimal director field for a large range of values
of the various shape parameters.Comment: 12 pages, 10 figure
Perceptual learning shapes multisensory causal inference via two distinct mechanisms
To accurately represent the environment, our brains must integrate sensory signals from a common source while segregating those from independent sources. A reasonable strategy for performing this task is to restrict integration to cues that coincide in space and time. However, because multisensory signals are subject to differential transmission and processing delays, the brain must retain a degree of tolerance for temporal discrepancies. Recent research suggests that the width of this 'temporal binding window' can be reduced through perceptual learning, however, little is known about the mechanisms underlying these experience-dependent effects. Here, in separate experiments, we measure the temporal and spatial binding windows of human participants before and after training on an audiovisual temporal discrimination task. We show that training leads to two distinct effects on multisensory integration in the form of (i) a specific narrowing of the temporal binding window that does not transfer to spatial binding and (ii) a general reduction in the magnitude of crossmodal interactions across all spatiotemporal disparities. These effects arise naturally from a Bayesian model of causal inference in which learning improves the precision of audiovisual timing estimation, whilst concomitantly decreasing the prior expectation that stimuli emanate from a common source
Collimated, single-pass atom source from a pulsed alkali metal dispenser for laser-cooling experiments
We have developed an improved scheme for loading atoms into a magneto-optical
trap (MOT) from a directed alkali metal dispenser in < 10^-10 torr ultra-high
vacuum conditions. A current-driven dispenser was surrounded with a cold
absorbing "shroud" held at < 0 C, pumping rubidium atoms not directed into the
MOT. This nearly eliminates background alkali atoms and reduces the detrimental
rise in pressure normally associated with these devices. The system can be
well-described as a current-controlled, rapidly-switched, two-temperature
thermal beam, and was used to load a MOT with 3 x 10^8 atoms.Comment: 5 pages, 4 figure
The self-consistent gravitational self-force
I review the problem of motion for small bodies in General Relativity, with
an emphasis on developing a self-consistent treatment of the gravitational
self-force. An analysis of the various derivations extant in the literature
leads me to formulate an asymptotic expansion in which the metric is expanded
while a representative worldline is held fixed; I discuss the utility of this
expansion for both exact point particles and asymptotically small bodies,
contrasting it with a regular expansion in which both the metric and the
worldline are expanded. Based on these preliminary analyses, I present a
general method of deriving self-consistent equations of motion for arbitrarily
structured (sufficiently compact) small bodies. My method utilizes two
expansions: an inner expansion that keeps the size of the body fixed, and an
outer expansion that lets the body shrink while holding its worldline fixed. By
imposing the Lorenz gauge, I express the global solution to the Einstein
equation in the outer expansion in terms of an integral over a worldtube of
small radius surrounding the body. Appropriate boundary data on the tube are
determined from a local-in-space expansion in a buffer region where both the
inner and outer expansions are valid. This buffer-region expansion also results
in an expression for the self-force in terms of irreducible pieces of the
metric perturbation on the worldline. Based on the global solution, these
pieces of the perturbation can be written in terms of a tail integral over the
body's past history. This approach can be applied at any order to obtain a
self-consistent approximation that is valid on long timescales, both near and
far from the small body. I conclude by discussing possible extensions of my
method and comparing it to alternative approaches.Comment: 44 pages, 4 figure
Understanding the effect of sheared flow on microinstabilities
The competition between the drive and stabilization of plasma
microinstabilities by sheared flow is investigated, focusing on the ion
temperature gradient mode. Using a twisting mode representation in sheared slab
geometry, the characteristic equations have been formulated for a dissipative
fluid model, developed rigorously from the gyrokinetic equation. They clearly
show that perpendicular flow shear convects perturbations along the field at a
speed we denote by (where is the sound speed), whilst parallel
flow shear enters as an instability driving term analogous to the usual
temperature and density gradient effects. For sufficiently strong perpendicular
flow shear, , the propagation of the system characteristics is
unidirectional and no unstable eigenmodes may form. Perturbations are swept
along the field, to be ultimately dissipated as they are sheared ever more
strongly. Numerical studies of the equations also reveal the existence of
stable regions when , where the driving terms conflict. However, in both
cases transitory perturbations exist, which could attain substantial amplitudes
before decaying. Indeed, for , they are shown to exponentiate
times. This may provide a subcritical route to turbulence in
tokamaks.Comment: minor revisions; accepted to PPC
Structural, electronic, and chemical properties of multiply iodized aluminum clusters
The electronic structure, stability, and reactivity of iodized aluminum clusters, which have been investigated via reactivity studies, are examined by first-principles gradient corrected density functional calculations. The observed behavior of Al13Iāx and Al14Iāx clusters is shown to indicate that for xā©½8, they consist of compact Alā13 and Al++14 cores, respectively, demonstrating that they behave as halogen- or alkaline earthlike superatoms. For x\u3e8, the Al cores assume a cagelike structure associated with the charging of the cores. The observed mass spectra of the reacted clusters reveal that Al13Iāx species are more stable for even x while Al14Iāx exhibit enhanced stability for odd x(xā©¾3). It is shown that these observations are linked to the formation and filling of āactive sites,ā demonstrating a novel chemistry of superatoms
Suppression of turbulence and subcritical fluctuations in differentially rotating gyrokinetic plasmas
Differential rotation is known to suppress linear instabilities in fusion
plasmas. However, even in the absence of growing eigenmodes, subcritical
fluctuations that grow transiently can lead to sustained turbulence. Here
transient growth of electrostatic fluctuations driven by the parallel velocity
gradient (PVG) and the ion temperature gradient (ITG) in the presence of a
perpendicular ExB velocity shear is considered. The maximally simplified case
of zero magnetic shear is treated in the framework of a local shearing box.
There are no linearly growing eigenmodes, so all excitations are transient. The
maximal amplification factor of initial perturbations and the corresponding
wavenumbers are calculated as functions of q/\epsilon (=safety factor/aspect
ratio), temperature gradient and velocity shear. Analytical results are
corroborated and supplemented by linear gyrokinetic numerical tests. For
sufficiently low values of q/\epsilon (<7 in our model), regimes with fully
suppressed ion-scale turbulence are possible. For cases when turbulence is not
suppressed, an elementary heuristic theory of subcritical PVG turbulence
leading to a scaling of the associated ion heat flux with q, \epsilon, velocity
shear and temperature gradient is proposed; it is argued that the transport is
much less stiff than in the ITG regime.Comment: 36 pages in IOP latex style; 12 figures; submitted to PPC
Composition, Morphology, and Stratigraphy of Noachian Crust around the Isidis basin
Definitive exposures of pristine, ancient crust on Mars are rare, and the finding that much of the ancient Noachian terrain on Mars exhibits evidence of phyllosilicate alteration adds further complexity. We have analyzed high-resolution data from the Mars Reconnaissance Orbiter in the well-exposed Noachian crust surrounding the Isidis basin. We focus on data from the Compact Reconnaissance Imaging Spectrometer for Mars as well as imaging data sets from High Resolution Imagine Science Experiment and Context Imager. These data show the lowermost unit of Noachian crust in this region is a complex, brecciated unit of diverse compositions. Breccia blocks consisting of unaltered mafic rocks together with rocks showing signatures of Fe/Mg-phyllosilicates are commonly observed. In regions of good exposure, layered or banded phyllosilicate-bearing breccia rocks are observed suggestive of pre-Isidis sedimentary deposits. In places, the phyllosilicate-bearing material appears as a matrix surrounding mafic blocks, and the mafic rocks show evidence of complex folded relationships possibly formed in the turbulent flow during emplacement of basin-scale ejecta. These materials likely include both pre-Isidis basement rocks as well as the brecciated products of the Isidis basināforming event at 3.9 Ga. A banded olivine unit capped by a mafic unit covers a large topographic and geographic range from northwest of Nili Fossae to the southern edge of the Isidis basin. This olivine-mafic cap combination superimposes the phyllosilicate-bearing basement rocks and distinctly conforms to the underlying basement topography. This may be due to draping of the topography by a fluid or tectonic deformation of a previously flatter lying morphology. We interpret the draping, superposed olivine-mafic cap combination to be impact melt from the Isidis basināforming event. While some distinct post-Isidis alteration is evident (carbonate, kaolinite, and serpentine), the persistence of olivine from the time of Isidis basin suggests that large-scale aqueous alteration processes had ceased by the time this unit was emplaced
- ā¦