3,090 research outputs found

    Perceptual learning reconfigures the effects of visual adaptation

    Get PDF
    Our sensory experiences over a range of different timescales shape our perception of the environment. Two particularly striking short-term forms of plasticity with manifestly different time courses and perceptual consequences are those caused by visual adaptation and perceptual learning. Although conventionally treated as distinct forms of experience-dependent plasticity, their neural mechanisms and perceptual consequences have become increasingly blurred, raising the possibility that they might interact. To optimize our chances of finding a functionally meaningful interaction between learning and adaptation, we examined in humans the perceptual consequences of learning a fine discrimination task while adapting the neurons that carry most information for performing this task. Learning improved discriminative accuracy to a level that ultimately surpassed that in an unadapted state. This remarkable improvement came at a price: adapting directions that before learning had little effect elevated discrimination thresholds afterward. The improvements in discriminative accuracy grew quickly and surpassed unadapted levels within the first few training sessions, whereas the deterioration in discriminative accuracy had a different time course. This learned reconfiguration of adapted discriminative accuracy occurred without a concomitant change to the characteristic perceptual biases induced by adaptation, suggesting that the system was still in an adapted state. Our results point to a functionally meaningful pushā€“pull interaction between learning and adaptation in which a gain in sensitivity in one adapted state is balanced by a loss of sensitivity in other adapted states

    SELECTING A BUSINESS MAJOR WITHIN THE COLLEGE OF BUSINESS

    Get PDF
    This study employed a survey in examining the important influences that shape a studentā€™s selection of a major in the College of Business (COB). In particular, it compared these influences, by major, to assess which items were most (and least) important to the students majoring in accounting, general business, finance, management, marketing, and MIS. The influences, totaling 37, included internal influences (e.g., interest in the field), external influences (e.g., projected salary), and interpersonal influences (influence of significant others). Some of the findings were consistent with those of prior studies. For example, interesting work was highly important for all business majors, and specific interpersonal influences such as parents, high school teachers, and peers were relatively unimportant. The findings presented herein suggest that the overall impact of interpersonal influence may have been underestimated in previous studies. Unlike many previous studies, this study showed that job availability and job security were more important to students than interest in the field. This study augments the extant literature in that the survey was conducted right after the 2009 recession, which allowed an analysis of student decision making during a period of high unemployment and lingering economic uncertainty. Implications and suggestions for further research are discussed

    Texture and shape of two-dimensional domains of nematic liquid crystal

    Get PDF
    We present a generalized approach to compute the shape and internal structure of two-dimensional nematic domains. By using conformal mappings, we are able to compute the director field for a given domain shape that we choose from a rich class, which includes drops with large and small aspect ratios, and sharp domain tips as well as smooth ones. Results are assembled in a phase diagram that for given domain size, surface tension, anchoring strength, and elastic constant shows the transitions from a homogeneous to a bipolar director field, from circular to elongated droplets, and from sharp to smooth domain tips. We find a previously unaccounted regime, where the drop is nearly circular, the director field bipolar and the tip rounded. We also find that bicircular director fields, with foci that lie outside the domain, provide a remarkably accurate description of the optimal director field for a large range of values of the various shape parameters.Comment: 12 pages, 10 figure

    Perceptual learning shapes multisensory causal inference via two distinct mechanisms

    Get PDF
    To accurately represent the environment, our brains must integrate sensory signals from a common source while segregating those from independent sources. A reasonable strategy for performing this task is to restrict integration to cues that coincide in space and time. However, because multisensory signals are subject to differential transmission and processing delays, the brain must retain a degree of tolerance for temporal discrepancies. Recent research suggests that the width of this 'temporal binding window' can be reduced through perceptual learning, however, little is known about the mechanisms underlying these experience-dependent effects. Here, in separate experiments, we measure the temporal and spatial binding windows of human participants before and after training on an audiovisual temporal discrimination task. We show that training leads to two distinct effects on multisensory integration in the form of (i) a specific narrowing of the temporal binding window that does not transfer to spatial binding and (ii) a general reduction in the magnitude of crossmodal interactions across all spatiotemporal disparities. These effects arise naturally from a Bayesian model of causal inference in which learning improves the precision of audiovisual timing estimation, whilst concomitantly decreasing the prior expectation that stimuli emanate from a common source

    Collimated, single-pass atom source from a pulsed alkali metal dispenser for laser-cooling experiments

    Full text link
    We have developed an improved scheme for loading atoms into a magneto-optical trap (MOT) from a directed alkali metal dispenser in < 10^-10 torr ultra-high vacuum conditions. A current-driven dispenser was surrounded with a cold absorbing "shroud" held at < 0 C, pumping rubidium atoms not directed into the MOT. This nearly eliminates background alkali atoms and reduces the detrimental rise in pressure normally associated with these devices. The system can be well-described as a current-controlled, rapidly-switched, two-temperature thermal beam, and was used to load a MOT with 3 x 10^8 atoms.Comment: 5 pages, 4 figure

    The self-consistent gravitational self-force

    Full text link
    I review the problem of motion for small bodies in General Relativity, with an emphasis on developing a self-consistent treatment of the gravitational self-force. An analysis of the various derivations extant in the literature leads me to formulate an asymptotic expansion in which the metric is expanded while a representative worldline is held fixed; I discuss the utility of this expansion for both exact point particles and asymptotically small bodies, contrasting it with a regular expansion in which both the metric and the worldline are expanded. Based on these preliminary analyses, I present a general method of deriving self-consistent equations of motion for arbitrarily structured (sufficiently compact) small bodies. My method utilizes two expansions: an inner expansion that keeps the size of the body fixed, and an outer expansion that lets the body shrink while holding its worldline fixed. By imposing the Lorenz gauge, I express the global solution to the Einstein equation in the outer expansion in terms of an integral over a worldtube of small radius surrounding the body. Appropriate boundary data on the tube are determined from a local-in-space expansion in a buffer region where both the inner and outer expansions are valid. This buffer-region expansion also results in an expression for the self-force in terms of irreducible pieces of the metric perturbation on the worldline. Based on the global solution, these pieces of the perturbation can be written in terms of a tail integral over the body's past history. This approach can be applied at any order to obtain a self-consistent approximation that is valid on long timescales, both near and far from the small body. I conclude by discussing possible extensions of my method and comparing it to alternative approaches.Comment: 44 pages, 4 figure

    Understanding the effect of sheared flow on microinstabilities

    Full text link
    The competition between the drive and stabilization of plasma microinstabilities by sheared flow is investigated, focusing on the ion temperature gradient mode. Using a twisting mode representation in sheared slab geometry, the characteristic equations have been formulated for a dissipative fluid model, developed rigorously from the gyrokinetic equation. They clearly show that perpendicular flow shear convects perturbations along the field at a speed we denote by McsMc_s (where csc_s is the sound speed), whilst parallel flow shear enters as an instability driving term analogous to the usual temperature and density gradient effects. For sufficiently strong perpendicular flow shear, M>1M >1, the propagation of the system characteristics is unidirectional and no unstable eigenmodes may form. Perturbations are swept along the field, to be ultimately dissipated as they are sheared ever more strongly. Numerical studies of the equations also reveal the existence of stable regions when M<1M < 1, where the driving terms conflict. However, in both cases transitory perturbations exist, which could attain substantial amplitudes before decaying. Indeed, for Mā‰«1M \gg 1, they are shown to exponentiate M\sqrt{M} times. This may provide a subcritical route to turbulence in tokamaks.Comment: minor revisions; accepted to PPC

    Structural, electronic, and chemical properties of multiply iodized aluminum clusters

    Get PDF
    The electronic structure, stability, and reactivity of iodized aluminum clusters, which have been investigated via reactivity studies, are examined by first-principles gradient corrected density functional calculations. The observed behavior of Al13Iāˆ’x and Al14Iāˆ’x clusters is shown to indicate that for xā©½8, they consist of compact Alāˆ’13 and Al++14 cores, respectively, demonstrating that they behave as halogen- or alkaline earthlike superatoms. For x\u3e8, the Al cores assume a cagelike structure associated with the charging of the cores. The observed mass spectra of the reacted clusters reveal that Al13Iāˆ’x species are more stable for even x while Al14Iāˆ’x exhibit enhanced stability for odd x(xā©¾3). It is shown that these observations are linked to the formation and filling of ā€œactive sites,ā€ demonstrating a novel chemistry of superatoms

    Suppression of turbulence and subcritical fluctuations in differentially rotating gyrokinetic plasmas

    Full text link
    Differential rotation is known to suppress linear instabilities in fusion plasmas. However, even in the absence of growing eigenmodes, subcritical fluctuations that grow transiently can lead to sustained turbulence. Here transient growth of electrostatic fluctuations driven by the parallel velocity gradient (PVG) and the ion temperature gradient (ITG) in the presence of a perpendicular ExB velocity shear is considered. The maximally simplified case of zero magnetic shear is treated in the framework of a local shearing box. There are no linearly growing eigenmodes, so all excitations are transient. The maximal amplification factor of initial perturbations and the corresponding wavenumbers are calculated as functions of q/\epsilon (=safety factor/aspect ratio), temperature gradient and velocity shear. Analytical results are corroborated and supplemented by linear gyrokinetic numerical tests. For sufficiently low values of q/\epsilon (<7 in our model), regimes with fully suppressed ion-scale turbulence are possible. For cases when turbulence is not suppressed, an elementary heuristic theory of subcritical PVG turbulence leading to a scaling of the associated ion heat flux with q, \epsilon, velocity shear and temperature gradient is proposed; it is argued that the transport is much less stiff than in the ITG regime.Comment: 36 pages in IOP latex style; 12 figures; submitted to PPC

    Composition, Morphology, and Stratigraphy of Noachian Crust around the Isidis basin

    Get PDF
    Definitive exposures of pristine, ancient crust on Mars are rare, and the finding that much of the ancient Noachian terrain on Mars exhibits evidence of phyllosilicate alteration adds further complexity. We have analyzed high-resolution data from the Mars Reconnaissance Orbiter in the well-exposed Noachian crust surrounding the Isidis basin. We focus on data from the Compact Reconnaissance Imaging Spectrometer for Mars as well as imaging data sets from High Resolution Imagine Science Experiment and Context Imager. These data show the lowermost unit of Noachian crust in this region is a complex, brecciated unit of diverse compositions. Breccia blocks consisting of unaltered mafic rocks together with rocks showing signatures of Fe/Mg-phyllosilicates are commonly observed. In regions of good exposure, layered or banded phyllosilicate-bearing breccia rocks are observed suggestive of pre-Isidis sedimentary deposits. In places, the phyllosilicate-bearing material appears as a matrix surrounding mafic blocks, and the mafic rocks show evidence of complex folded relationships possibly formed in the turbulent flow during emplacement of basin-scale ejecta. These materials likely include both pre-Isidis basement rocks as well as the brecciated products of the Isidis basinā€“forming event at 3.9 Ga. A banded olivine unit capped by a mafic unit covers a large topographic and geographic range from northwest of Nili Fossae to the southern edge of the Isidis basin. This olivine-mafic cap combination superimposes the phyllosilicate-bearing basement rocks and distinctly conforms to the underlying basement topography. This may be due to draping of the topography by a fluid or tectonic deformation of a previously flatter lying morphology. We interpret the draping, superposed olivine-mafic cap combination to be impact melt from the Isidis basinā€“forming event. While some distinct post-Isidis alteration is evident (carbonate, kaolinite, and serpentine), the persistence of olivine from the time of Isidis basin suggests that large-scale aqueous alteration processes had ceased by the time this unit was emplaced
    • ā€¦
    corecore