157 research outputs found
Radial Migration in Spiral Galaxies
The redistribution of stars in galactic disks is an important aspect of disk
galaxy evolution. Stars that efficiently migrate in such a way that does not
also appreciably heat their orbits can drastically affect the stellar
populations observed today and therefore influence constraints derived from
such observations. Unfortunately, while the theoretical understanding of the
migration process is becoming increasingly robust, there are currently few
specific observable predictions. As a result, we do not yet have a clear handle
on whether the process has been important for the Milky Way in the past or how
to constrain it. I discuss some of the expected qualitative outcomes of
migration as well as some current controversies.Comment: To appear in "Lessons from the Local Group - A Conference in honor of
David Block and Bruce Elmegreen" eds. Freeman, K.C., Elmegreen, B.G., Block,
D.L., and Woolway,
Orbital Decay of Supermassive Black Hole Binaries in Clumpy Multiphase Merger Remnants
We simulate an equal-mass merger of two Milky Way-size galaxy discs with
moderate gas fractions at parsec-scale resolution including a new model for
radiative cooling and heating in a multi-phase medium, as well as star
formation and feedback from supernovae. The two discs initially have a
supermassive black hole (SMBH) embedded in
their centers. As the merger completes and the two galactic cores merge, the
SMBHs form a a pair with a separation of a few hundred pc that gradually
decays. Due to the stochastic nature of the system immediately following the
merger, the orbital plane of the binary is significantly perturbed.
Furthermore, owing to the strong starburst the gas from the central region is
completely evacuated, requiring ~Myr for a nuclear disc to rebuild.
Most importantly, the clumpy nature of the interstellar medium has a major
impact on the the dynamical evolution of the SMBH pair, which undergo
gravitational encounters with massive gas clouds and stochastic torquing by
both clouds and spiral modes in the disk. These effects combine to greatly
delay the decay of the two SMBHs to separations of a few parsecs by nearly two
orders of magnitude, yr, compared to previous work. In mergers of
more gas-rich, clumpier galaxies at high redshift stochastic torques will be
even more pronounced and potentially lead to stronger modulation of the orbital
decay. This suggests that SMBH pairs at separations of several tens of parsecs
should be relatively common at any redshift.Comment: submitted to MNRAS; Comments very welcom
Probing the shape and history of the Milky Way halo with orbital spectral analysis
Accurate phase-space coordinates (three components of position and velocity) of individual stars are rapidly becoming available with current and future resolved star surveys. These data will enable the computation of the full three-dimensional orbits of tens of thousands of stars in the Milky Way’s stellar halo. We demonstrate that the analysis of stellar halo orbits in frequency space can be used to construct a ‘frequency map’ which provides a highly compact, yet intuitively informative way to represent the six-dimensional halo phase-space distribution function. This representation readily reveals the most important major orbit families in the halo, and the relative abundances of the different orbit families, which in turn reflect the shape and orientation of the dark matter halo relative to the disc. We demonstrate the value of frequency space orbit analysis by applying the method to halo orbits in a series of controlled simulations of disc galaxies. We show that the disc influences the shape of the inner halo making it nearly oblate, but the outer halo remains largely unaffected. Since the shape of the halo varies with radius, the frequency map provides a more versatile way to identify major and minor orbit families than traditional orbit classification schemes. Although the shape of the halo varies with radius, frequency maps of local samples of halo orbits confined to the inner halo contain most of the information about the global shape of the halo and its major orbit families. Frequency maps show that adiabatic growth of a disc traps halo orbits in numerous resonant orbit families (i.e. having commensurable frequencies). The locations and strengths of these resonant families are determined by both the global shape of the halo and its stellar distribution function. If a good estimate of the Galactic potential in the inner halo (within ∼ 50 kpc) is available, the appearance of strong, stable resonances in frequency maps of halo orbits will allow us to determine the degree of resonant trapping induced by the disc potential. We show that if the Galactic potential is not known exactly, a measure of the diffusion rate of a large sample of ∼ 104 halo orbits can help distinguish between the true potential and an incorrect potential. The orbital spectral analysis methods described in this paper provide a strong complementarity to existing methods for constraining the potential of the Milky Way halo and its stellar distribution function
Hierarchical formation of bulgeless galaxies II: Redistribution of angular momentum via galactic fountains
Within a fully cosmological hydrodynamical simulation, we form a galaxy which
rotates at 140 km/s, and is characterised by two loose spiral arms and a bar,
indicative of a Hubble Type SBc/d galaxy. We show that our simulated galaxy has
no classical bulge, with a pure disc profile at z=1, well after the major
merging activity has ended. A long-lived bar subsequently forms, resulting in
the formation of a secularly-formed "pseudo" bulge, with the final
bulge-to-total light ratio B/T=0.21. We show that the majority of gas which
loses angular momentum and falls to the central region of the galaxy during the
merging epoch is blown back into the hot halo, with much of it returning later
to form stars in the disc. We propose that this mechanism of redistribution of
angular momentum via a galactic fountain, when coupled with the results from
our previous study which showed why gas outflows are biased to have low angular
momentum, can solve the angular momentum/bulgeless disc problem of the cold
dark matter paradigm.Comment: 9 Pages, 10 Figures, accepted MNRAS version. Comments welcom
Disk galaxies with broken luminosity profiles from cosmological simulations
We present SPH cosmological simulations of the formation of three disk
galaxies with a detailed treatment of chemical evolution and cooling. The
resulting galaxies have properties compatible with observations: relatively
high disk-to-total ratios, thin stellar disks and good agreement with the
Tully-Fisher and the luminosity-size relations. They present a break in the
luminosity profile at 3.0 +- 0.5 disk scale lengths, while showing an
exponential mass profile without any apparent breaks, in line with recent
observational results. Since the stellar mass profile is exponential, only
differences in the stellar populations can be the cause of the luminosity
break. Although we find a cutoff for the star formation rate imposed by a
density threshold in our star formation model, it does not coincide with the
luminosity break and is located at 4.3 +- 0.4 disk scale lengths, with star
formation going on between both radii. The color profiles and the age profiles
are "U-shaped", with the minimum for both profiles located approximately at the
break radius. The SFR to stellar mass ratio increases until the break,
explaining the coincidence of the break with the minimum of the age profile.
Beyond the break we find a steep decline in the gas density and, consequently,
a decline in the SFR and redder colors. We show that most stars (64-78%) in the
outer disk originate in the inner disk and afterwards migrate there. Such
stellar migrations are likely the main origin of the U-shaped age profile and,
therefore, of the luminosity break.Comment: 8 pages, 4 figures. Accepted by ApJ
YOUNG STARS IN AN OLD BULGE: A NATURAL OUTCOME OF INTERNAL EVOLUTION IN THE MILKY WAY
The center of our disk galaxy, the Milky Way, is dominated by a boxy/peanut-shaped bulge. Numerous studies of the bulge based on stellar photometry have concluded that the bulge stars are exclusively old. The perceived lack of young stars in the bulge strongly constrains its likely formation scenarios, providing evidence that the bulge is a unique population that formed early and separately from the disk. However, recent studies of individual bulge stars using the microlensing technique have reported that they span a range of ages, emphasizing that the bulge may not be a monolithic structure. In this Letter we demonstrate that the presence of young stars that are located predominantly nearer to the plane is expected for a bulge that has formed from the disk via dynamical instabilities. Using an N-body+ smoothed particle hydrodynamics simulation of a disk galaxy forming out of gas cooling inside a dark matter halo and forming stars, we find a qualitative agreement between our model and the observations of younger metal-rich stars in the bulge. We are also able to partially resolve the apparent contradiction in the literature between results that argue for a purely old bulge population and those that show a population comprised of a range in ages; the key is where to look
Imprints of radial migration on the Milky Way’s metallicity distribution functions
Recent analysis of the SDSS-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 12 stellar catalog has revealed that the Milky Way’s (MW) metallicity distribution function (MDF) changes shape as a function of radius, transitioning from being negatively skewed at small Galactocentric radii to positively skewed at large Galactocentric radii. Using a high-resolution, N-body+SPH simulation, we show that the changing skewness arises from radial migration—metal-rich stars form in the inner disk and subsequently migrate to the metal-poorer outer disk. These migrated stars represent a large fraction (>50%) of the stars in the outer disk; they populate the high-metallicity tail of the MDFs and are, in general, more metal-rich than the surrounding outer disk gas. The simulation also reproduces another surprising APOGEE result: the spatially invariant high-[α/Fe] MDFs. This arises in the simulation from the migration of a population formed within a narrow range of radii (3.2 ±1.2 kpc) and time (8.8 ± 0.6 Gyr ago), rather than from spatially extended star formation in a homogeneous medium at early times. These results point toward the crucial role radial migration has played in shaping our MW
Probing the shape and history of the Milky Way halo with orbital spectral analysis
Accurate phase-space coordinates (three components of position and velocity) of individual stars are rapidly becoming available with current and future resolved star surveys. These data will enable the computation of the full three-dimensional orbits of tens of thousands of stars in the Milky Way's stellar halo. We demonstrate that the analysis of stellar halo orbits in frequency space can be used to construct a ‘frequency map' which provides a highly compact, yet intuitively informative way to represent the six-dimensional halo phase-space distribution function. This representation readily reveals the most important major orbit families in the halo, and the relative abundances of the different orbit families, which in turn reflect the shape and orientation of the dark matter halo relative to the disc. We demonstrate the value of frequency space orbit analysis by applying the method to halo orbits in a series of controlled simulations of disc galaxies. We show that the disc influences the shape of the inner halo making it nearly oblate, but the outer halo remains largely unaffected. Since the shape of the halo varies with radius, the frequency map provides a more versatile way to identify major and minor orbit families than traditional orbit classification schemes. Although the shape of the halo varies with radius, frequency maps of local samples of halo orbits confined to the inner halo contain most of the information about the global shape of the halo and its major orbit families. Frequency maps show that adiabatic growth of a disc traps halo orbits in numerous resonant orbit families (i.e. having commensurable frequencies). The locations and strengths of these resonant families are determined by both the global shape of the halo and its stellar distribution function. If a good estimate of the Galactic potential in the inner halo (within ∼ 50 kpc) is available, the appearance of strong, stable resonances in frequency maps of halo orbits will allow us to determine the degree of resonant trapping induced by the disc potential. We show that if the Galactic potential is not known exactly, a measure of the diffusion rate of a large sample of ∼ 104 halo orbits can help distinguish between the true potential and an incorrect potential. The orbital spectral analysis methods described in this paper provide a strong complementarity to existing methods for constraining the potential of the Milky Way halo and its stellar distribution functio
- …