124 research outputs found

    High load vortex oscillations developed in Francis turbines

    Get PDF
    Francis turbines operating at high load conditions produce a typical flow pattern in the draft tube cone characterized by the presence of an axisymmetric central vortex. This central cavity could become unstable, generating synchronic pressure pulsations, usually called self-excited oscillations, which propagate into the whole machine. The on-set and size of the central vortex cavity depend on the geometry of the runner and draft tube and on the operating point as well. Numerical flow simulations and model tests allow for the characterization of the different flow patterns induced by each particular Francis turbine design and, when studied in combination with the hydraulic system, including the intake and penstock, could predict the prototype hydraulic behavior for the complete operation zone. The present work focuses the CFD simulation on the development and dynamic behavior of the central axisymmetric vortex for a medium-head Francis turbine operating at high load conditions. The CFD simulations are based in two-phase transient calculations. Oscillation frequencies against its cavity volume development were obtained and good correlation was found with experimental results.Facultad de Ingenierí

    High load vortex oscillations developed in Francis turbines

    Get PDF
    Francis turbines operating at high load conditions produce a typical flow pattern in the draft tube cone characterized by the presence of an axisymmetric central vortex. This central cavity could become unstable, generating synchronic pressure pulsations, usually called self-excited oscillations, which propagate into the whole machine. The on-set and size of the central vortex cavity depend on the geometry of the runner and draft tube and on the operating point as well. Numerical flow simulations and model tests allow for the characterization of the different flow patterns induced by each particular Francis turbine design and, when studied in combination with the hydraulic system, including the intake and penstock, could predict the prototype hydraulic behavior for the complete operation zone. The present work focuses the CFD simulation on the development and dynamic behavior of the central axisymmetric vortex for a medium-head Francis turbine operating at high load conditions. The CFD simulations are based in two-phase transient calculations. Oscillation frequencies against its cavity volume development were obtained and good correlation was found with experimental results.Facultad de Ingenierí

    Air injection test on a Kaplan turbine: Prototype - Model comparison

    Get PDF
    Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.Facultad de Ingenierí

    Ecuación fundamental de Euler

    Get PDF
    Los patrones de escurrimiento reales dentro de una bomba centrífuga son tridimensionales, lo cual hace compleja una descripción general de las trayectorias. En cambio, si se asume que el escurrimiento es unidimensional, es sencillo establecer la conexión entre la transferencia de energía y el ’diseño hidráulico’ de impulsores y estatores o pasajes estacionarios de estas máquinas, a los fines de comprender cómo se produce la transformación de energía. De hecho, el análisis unidimensional permite deducir en forma satisfactoria (aunque con limitaciones) las características operativas de una bomba, por ejemplo: potencia y salto respecto al caudal, en las condiciones óptimas o de diseño. En las condiciones de operación que se alejan del punto de diseño, en cambio, el análisis unidimensional solo permite anticipar cualitativamente qué tipo de distorsiones tendrá el escurrimiento en comparación con la situación de diseño. Planteando hipótesis de fluido ideal (es decir: no viscoso, incompresible e irrotacional); considerando que la cantidad de álabes es infinita; y que el escurrimiento es unidimensional, de manera que las trayectorias ’siguen el perfil de los álabes, se logra obtener una descripción muy útil de aspectos relevantes del diseño y funcionamiento de las turbomáquinas en general y las bombas en particular, como, por ejemplo: encontrar una ecuación general que es válida para las turbomáquinas hidráulicas, diferenciar los distintos diseños de acuerdo a la trayectoria del flujo, aplicar la teoría de la similitud a través de las velocidades características y describir estados puntuales de operación (en el punto de diseño y fuera de él). La mayor o menor representatividad de las hipótesis simplificativas depende de qué tan alejadas estén las condiciones reales de funcionamiento respecto de las hipótesis. Por ejemplo, cuanto menor es la cantidad de álabes, más se aleja el comportamiento de la hipótesis de escurrimiento unidimensional, ya que entre un álabe y su consecutivo, las trayectorias no son homogéneas sino que se asimilan a las líneas de corriente que rodean a un cuerpo sumergido en una corriente (teoría de la sustentación). El mecanismo de transferencia del par (o potencia) del eje al fluido que fluye dentro del impulsor es fundamentalmente dinámico; es decir: está relacionado con cambios en la velocidad del fluido. Esto requiere la introducción de la segunda ley de Newton que, planteada en forma de cantidad de movimiento angular, permite explicar de qué manera se le entrega momento cinético al fluido, a través de lo que se conoce como la ecuación fundamental de Euler.Facultad de Ingenierí

    Air injection test on a Kaplan turbine: Prototype - Model comparison

    Get PDF
    Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.Facultad de Ingenierí

    Pressurized air injection in an axial hydro-turbine model for the mitigation of tip leakage cavitation

    Get PDF
    Tip leakage vortex cavitation in axial hydro-turbines may cause erosion, noise and vibration. Damage due to cavitation can be found at the tip of the runner blades on the low pressure side and the discharge ring. In some cases, the erosion follows an oscillatory pattern that is related to the number of guide vanes. That might suggest that a relationship exists between the flow through the guide vanes and the tip vortex cavitating core that induces this kind of erosion. On the other hand, it is known that air injection has a beneficial effect on reducing the damage by cavitation. In this paper, a methodology to identify the interaction between guide vanes and tip vortex cavitation is presented and the effect of air injection in reducing this particular kind of erosion was studied over a range of operating conditions on a Kaplan scale model. It was found that air injection, at the expense of slightly reducing the efficiency of the turbine, mitigates the erosive potential of tip leakage cavitation, attenuates the interaction between the flow through the guide vanes and the tip vortex and decreases the level of vibration of the structural components.Facultad de Ingenierí

    Pressurized air injection in an axial hydro-turbine model for the mitigation of tip leakage cavitation

    Get PDF
    Tip leakage vortex cavitation in axial hydro-turbines may cause erosion, noise and vibration. Damage due to cavitation can be found at the tip of the runner blades on the low pressure side and the discharge ring. In some cases, the erosion follows an oscillatory pattern that is related to the number of guide vanes. That might suggest that a relationship exists between the flow through the guide vanes and the tip vortex cavitating core that induces this kind of erosion. On the other hand, it is known that air injection has a beneficial effect on reducing the damage by cavitation. In this paper, a methodology to identify the interaction between guide vanes and tip vortex cavitation is presented and the effect of air injection in reducing this particular kind of erosion was studied over a range of operating conditions on a Kaplan scale model. It was found that air injection, at the expense of slightly reducing the efficiency of the turbine, mitigates the erosive potential of tip leakage cavitation, attenuates the interaction between the flow through the guide vanes and the tip vortex and decreases the level of vibration of the structural components.Facultad de Ingenierí

    Mitigation of tip vortex cavitation by means of air injection on a Kaplan turbine scale model

    Get PDF
    Kaplan turbines operating at full-load conditions may undergo excessive vibration, noise and cavitation. In such cases, damage by erosion associated to tip vortex cavitation can be observed at the discharge ring. This phenomenon involves design features such as (1) overhang of guide vanes; (2) blade profile; (3) gap increasing size with blade opening; (4) suction head; (5) operation point; and (6) discharge ring stiffness, among others. Tip vortex cavitation may cause erosion at the discharge ring and draft tube inlet following a wavy pattern, in which the number of vanes can be clearly identified. Injection of pressurized air above the runner blade centerline was tested as a mean to mitigate discharge ring cavitation damage on a scale model. Air entrance was observed by means of a high-speed camera in order to track the air trajectory toward its mergence with the tip vortex cavitation core. Post-processing of acceleration signals shows that the level of vibration and the RSI frequency amplitude decrease proportionally with air flow rate injected. These findings reveal the potential mitigating effect of air injection in preventing cavitation damage and will be useful in further tests to be performed on prototype, aiming at determining the optimum air flow rate, size and distribution of the injectors.Facultad de Ingenierí

    Pressure pulsation in Kaplan turbines: Prototype-CFD comparison

    Get PDF
    Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.Facultad de Ingenierí

    Pressure pulsation in Kaplan turbines: Prototype-CFD comparison

    Get PDF
    Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.Facultad de Ingenierí
    • …
    corecore