1,423 research outputs found

    Self-organization of atoms in a cavity field: threshold, bistability and scaling laws

    Full text link
    We present a detailed study of the spatial self-organization of laser-driven atoms in an optical cavity, an effect predicted on the basis of numerical simulations [P. Domokos and H. Ritsch, Phys. Rev. Lett. 89, 253003 (2002)] and observed experimentally [A. T. Black et al., Phys. Rev. Lett. 91, 203001 (2003)]. Above a threshold in the driving laser intensity, from a uniform distribution the atoms evolve into one of two stable patterns that produce superradiant scattering into the cavity. We derive analytic formulas for the threshold and critical exponent of this phase transition from a mean-field approach. Numerical simulations of the microscopic dynamics reveal that, on laboratory timescale, a hysteresis masks the mean-field behaviour. Simple physical arguments explain this phenomenon and provide analytical expressions for the observable threshold. Above a certain density of the atoms a limited number of ``defects'' appear in the organized phase, and influence the statistical properties of the system. The scaling of the cavity cooling mechanism and the phase space density with the atom number is also studied.Comment: submitted to PR

    Exciton-Polariton scattering for defect detection in cold atom Optical Lattices

    Full text link
    We study the effect of defects in the Mott insulator phase of ultracold atoms in an optical lattice on the dynamics of resonant excitations. Defects, which can either be empty sites in a Mott insulator state with one atom per site or a singly occupied site for a filling factor two, change the dynamics of Frenkel excitons and cavity polaritons. While the vacancies in first case behave like hard sphere scatters for excitons, singly occupied sites in the latter case can lead to attractive or repulsive scattering potentials. We suggest cavity polaritons as observation tool of such defects, and show how the scattering can be controlled in changing the exciton-photon detuning. In the case of asymmetric optical lattice sites we present how the scattering effective potential can be detuned by the cavity photon polarization direction, with the possibility of a crossover from a repulsive into an attractive potential.Comment: 9 pages, 10 figure

    Bright and dark excitons in an atom--pair filled optical lattice within a cavity

    Full text link
    We study electronic excitations of a degenerate gas of atoms trapped in pairs in an optical lattice. Local dipole-dipole interactions produce a long lived antisymmetric and a short lived symmetric superposition of individual atomic excitations as the lowest internal on-site excitations. Due to the much larger dipole moment the symmetric states couple efficiently to neighbouring lattice sites and can be well represented by Frenkel excitons, while the antisymmetric dark states stay localized. Within a cavity only symmetric states couple to cavity photons inducing long range interactions to form polaritons. We calculate their dispersion curves as well as cavity transmission and reflection spectra to observe them. For a lattice with aspherical sites bright and dark states get mixed and their relative excitation energies depend on photon polarizations. The system should allow to study new types of solid state phenomena in atom filled optical lattices

    Atom-mirror cooling and entanglement using cavity Electromagnetically Induced Transparency

    Full text link
    We investigate a hybrid optomechanical system comprised of a mechanical oscillator and an atomic 3-level ensemble within an optical cavity. We show that a suitably tailored cavity field response via Electromagnetically Induced Transparency (EIT) in the atomic medium allows for strong coupling of the mechanical mirror oscillations to the collective atomic ground-state spin. This facilitates ground-state cooling of the mirror motion, quantum state mapping and robust atom-mirror entanglement even for cavity widths larger than the mechanical oscillator frequency

    C++QED: An object-oriented framework for wave-function simulations of cavity QED systems

    Get PDF
    We present a framework for efficiently performing Monte Carlo wave-function simulations in cavity QED with moving particles. It relies heavily on the object-oriented programming paradigm as realised in C++, and is extensible and applicable for simulating open interacting quantum dynamics in general. The user is provided with a number of ``elements'', eg pumped moving particles, pumped lossy cavity modes, and various interactions to compose complex interacting systems, which contain several particles moving in electromagnetic fields of various configurations, and perform wave-function simulations on such systems. A number of tools are provided to facilitate the implementation of new elements.Comment: 31 pages, 8 figures, 3 table

    Microscopic physics of quantum self-organisation of optical lattices in cavities

    Get PDF
    We study quantum particles at zero temperature in an optical lattice coupled to a resonant cavity mode. The cavity field substantially modifies the particle dynamics in the lattice, and for strong particle-field coupling leads to a quantum phase with only every second site occupied. We study the growth of this new order out of a homogeneous initial distribution for few particles as the microscopic physics underlying a quantum phase transition. Simulations reveal that the growth dynamics crucially depends on the initial quantum many-body state of the particles and can be monitored via the cavity fluorescence. Studying the relaxation time of the ordering reveals inhibited tunnelling, which indicates that the effective mass of the particles is increased by the interaction with the cavity field. However, the relaxation becomes very quick for large coupling.Comment: 14 pages 6 figure

    Mimicking a Squeezed Bath Interaction: Quantum Reservoir Engineering with Atoms

    Get PDF
    The interaction of an atomic two-level system and a squeezed vacuum leads to interesting novel effects in atomic dynamics, including line narrowing in resonance fluorescence and absorption spectra, and a suppressed (enhanced) decay of the in-phase and out-of phase component of the atomic polarization. On the experimental side these predictions have so far eluded observation, essentially due to the difficulty of embedding atoms in a 4 pi squeezed vacuum. In this paper we show how to ``engineer'' a squeezed-bath-type interaction for an effective two-level system. In the simplest example, our two-level atom is represented by the two ground levels of an atom with angular momentum J=1/2 -> J=1/2 transition (a four level system) which is driven by (weak) laser fields and coupled to the vacuum reservoir of radiation modes. Interference between the spontaneous emission channels in optical pumping leads to a squeezed bath type coupling, and thus to symmetry breaking of decay on the Bloch sphere. With this system it should be possible to observe the effects predicted in the context of squeezed bath - atom interactions. The laser parameters allow one to choose properties of the squeezed bath interaction, such as the (effective) photon number expectation number N and the squeezing phase phi. We present results of a detailed analytical and numerical study.Comment: 24 pages, 8 figure

    Prospects for the cavity-assisted laser cooling of molecules

    Full text link
    Cooling of molecules via free-space dissipative scattering of photons is thought not to be practicable due to the inherently large number of Raman loss channels available to molecules and the prohibitive expense of building multiple repumping laser systems. The use of an optical cavity to enhance coherent Rayleigh scattering into a decaying cavity mode has been suggested as a potential method to mitigate Raman loss, thereby enabling the laser cooling of molecules to ultracold temperatures. We discuss the possibility of cavity-assisted laser cooling particles without closed transitions, identify conditions necessary to achieve efficient cooling, and suggest solutions given experimental constraints. Specifically, it is shown that cooperativities much greater than unity are required for cooling without loss, and that this could be achieved via the superradiant scattering associated with intracavity self-localization of the molecules. Particular emphasis is given to the polar hydroxyl radical (OH), cold samples of which are readily obtained from Stark deceleration.Comment: 18 pages, 10 figure

    Semiclassical theory of cavity-assisted atom cooling

    Get PDF
    We present a systematic semiclassical model for the simulation of the dynamics of a single two-level atom strongly coupled to a driven high-finesse optical cavity. From the Fokker-Planck equation of the combined atom-field Wigner function we derive stochastic differential equations for the atomic motion and the cavity field. The corresponding noise sources exhibit strong correlations between the atomic momentum fluctuations and the noise in the phase quadrature of the cavity field. The model provides an effective tool to investigate localisation effects as well as cooling and trapping times. In addition, we can continuously study the transition from a few photon quantum field to the classical limit of a large coherent field amplitude.Comment: 10 pages, 8 figure

    Quantum stability of self-organized atomic insulator-like states in optical resonators

    Get PDF
    We investigate a paradigm example of cavity quantum electrodynamics with many body systems: an ultracold atomic gas inside a pumped optical resonator. In particular, we study the stability of atomic insulator-like states, confined by the mechanical potential emerging from the cavity field spatial mode structure. As in open space, when the optical potential is sufficiently deep, the atomic gas is in the Mott-like state. Inside the cavity, however, the potential depends on the atomic distribution, which determines the refractive index of the medium, thus altering the intracavity field amplitude. We derive the effective Bose-Hubbard model describing the physics of the system in one dimension and study the crossover between the superfluid -- Mott insulator quantum states. We determine the regions of parameters where the atomic insulator states are stable, and predict the existence of overlapping stability regions corresponding to competing insulator-like states. Bistable behavior, controlled by the pump intensity, is encountered in the vicinity of the shifted cavity resonance.Comment: 13 pages, 6 figures. Replaced with revised version. Accepted for publication in New J. Phys., special issue "Quantum correlations in tailord matter
    • …
    corecore