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Abstract. We investigate a paradigm example of cavity quantum electro-
dynamics with many body systems: an ultracold atomic gas inside a pumped
optical resonator, confined by the mechanical potential emerging from the
cavity-field spatial mode structure. When the optical potential is sufficiently
deep, the atomic gas is in the Mott-insulator (MI) state as in open space. Inside
the cavity, however, the potential depends on the atomic distribution, which
determines the refractive index of the medium, thus altering the intracavity-field
amplitude. We derive the effective Bose–Hubbard model describing the physics
of the system in one-dimension and study the crossover between the superfluid-
MI quantum states. We predict the existence of overlapping stability regions
corresponding to competing insulator-like states. Bistable behavior, controlled
by the pump intensity, is encountered in the vicinity of the shifted cavity
resonance.
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1. Introduction

Cavity quantum electrodynamics (CQEDs) [1, 2] has been a key area of quantum optics since
its early days of optical instabilities, such as optical bistability [3], up to the most recent CQED
with single atoms interacting with single or few photons [4]–[9].

In recent years, considerable attention has been paid to a new regime of CQED, which
we termCQED with many-body systems. These studies focus on the mechanical effects of the
resonator field on the atomic motion, and on the non-linearity arising from the interdependence
between the cavity field and the atoms dynamics. Following the theoretical prediction of [10],
signatures of self-organization have been measured in the light scattered by laser-cooled
atoms in a transversally-pumped cavity [11]. These structures and their properties have been
theoretically studied in detail in [12, 13]. In different set-ups, Bragg scattering of atomic
structures inside optical resonators has been experimentally investigated in [14].

While in all the cases mentioned so far the atomic motion is essentially classical, the
stability and properties of these structures in the quantum regime are still largely unexplored.
This question acquires a special relevance in view of the recent experimental progress of CQED
with ultracold atoms. In fact, strong atom–field coupling between Bose–Einstein condensed
(BEC) atoms and the mode of a high-finesse optical cavity has been realized in the experiments
reported in [15]–[18]. Moreover, CQED techniques were used to measure pair correlations in
the atom laser [19], and have been proposed for characterizing quantum states of ultracold
matter [20]–[22].

In [23], we investigated the ground state of ultracold atoms in the optical lattice formed by
the interaction with the cavity mode. This system combines CQED with the many-body physics
of strongly correlatedultracold atoms. In particular, the non-linear dependence of the cavity
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field on the atomic motion opens novel perspectives to the rich scenario of ultracold atomic
gases in optical lattices. In open space, in fact, these systems offer the possibility to realize
paradigmatic systems of quantum many-body physics [24, 25], such as various versions of
Hubbard models [26]. A prominent example is the Bose–Hubbard (BH) model [27], exhibiting
the superfluid (SF)–Mott insulator (MI) quantum phase transition [28], whose realization with
ultracold atoms was proposed in [29], and demonstrated in [30]. In [23], we addressed the
question whether and how this transition is modified when the atoms are inside a resonator,
where the optical lattice due to the intracavity-field depends on the atomic density.

In this paper we report the details of the derivations presented in [23] and extend them to
novel regimes. The system we consider consists of ultracold atoms inside a resonator, which is
driven by a laser. Due to the strong coupling between cavity and atomic degrees of freedom,
the atoms shift the cavity resonance, thus modifying the intracavity field intensity. This in turn
determines the depth of the cavity potential. At ultralow temperatures we assume that the atoms
occupy only states of the lowest band of the periodic optical potential. In this regime, we present
the detailed derivation of the BH model for atoms in the one-dimensional (1D) potential of an
optical resonator, which complements and extends the derivation for few atoms by Maschler and
Ritsch in [31, 32] to large numbers of atoms and which is valid in an appropriate thermodynamic
limit. Using this model we study the SF–MI crossover as a function of the system parameters:
the chemical potentialµ, the pump strength and frequency, and the atomic density. Assuming
the tight-binding regime, we may describe the MI states using Wannier functions [33], whose
form is determined by the optical potential. The Wannier functions are then used to calculate
the coefficients in the BH model, as in standard textbooks. We determine the boundaries of
the MI states, using thestrong coupling expansionof [34], which is a quite accurate method
for the calculation of the phase-diagram of the BH model in 1D [25].

It must be stressed that the derivation of the BH model in the cavity does involve certain
novel aspects. Namely, the periodic optical potential depends functionally on the atomic density,
and hence on the Wannier functions. The problem is hence highly non-linear: the coefficients of
the equations determining the Wannier functions depend functionally on the Wannier functions
themselves, and the latter have thus to be determined self-consistently. This property has also
physical implications. In fact, since in our system the coefficients of the Hubbard model depend
on the atomic density, consequently, the diagrams in theµ–t-plane, wheret is the tunneling
energy, exhibit overlapping, competing Mott states, that may even consist of disconnected
regions for a wide range of parameters. In the vicinity of the shifted cavity resonance in the
strong coupling regime, the situation is even more complex: one encounters there also dispersive
bistable behavior [3]. Thus, from the quantum optical perspective, this paper investigates
stability of Mott-like phases, i.e. insulator-like states, in an optical resonator.

This paper is organized as follows. In section2, we present our model that describes a
system of two level atoms confined along the axis of an optical cavity. In section2.1, we
introduce the single-atom Hamiltonian. The many-body dynamics including the quantum noise
is introduced in section2.2. Section2.3 is devoted to the physical discussion of the role of
the various physical parameters on the system dynamics. The effective BH Hamiltonian is
derived in section3. In section4, we discuss the ground-state properties of our model. We
use the Gaussian approximation for the Wannier wave functions, checking carefully its validity.
Within the Gaussian approximation and the strong coupling expansion method of Freericks and
Monien [34] the stability regions for the Mott states are obtained analytically, up to the solution
of the non-linear self-consistent equation for the width of the Wannier functions. Numerical

New Journal of Physics 10 (2008) 045002 (http://www.njp.org/)

http://www.njp.org/


4

results are reported and their physical meaning is discussed in section4.2. The validity of the
approximations is addressed in section4.3. We conclude in section5, while in the appendices
the details of the derivation of the BH Hamiltonian and of the strong coupling expansion method
are reported.

2. The model

In this section, we generalize the quantum optical model of a single atom inside a cavity to the
many-body case, considering particle collisions at ultralow temperatures and quantum statistics.
For this purpose, we first introduce the single-atom dynamics, then write the Hamiltonian in
second quantization, introducing atom–atom collisions, and discuss the basic properties.

2.1. Single-particle dynamics

We consider a single atom of massM inside a cavity. The atomic dipole transition at
frequencyω0, between the ground state|g〉 and the excited state|e〉, couples quasi-resonantly
with an optical mode of the resonator at frequencyωc, wave vectork and position-dependent
coupling strength

g(x) = g0 cos(kx),

g0 being the vacuum Rabi frequency. The resonator is driven by a classical field of amplitudeη

and oscillating at frequencyωp. We consider the atomic motion along the cavity axis, which
coincides here with thex-axis, and assume tight confinement along the radial plane so that the
transverse motion can be considered frozen out. Atomic center-of-mass position and momentum
operators arex and p, fulfilling the uncertainty relation [x, p] = ih̄. In the reference frame
oscillating at the frequencyωp of the pump field, the normally-ordered Hamiltonian describing
the coherent dynamics of the atomic and cavity-mode states reads

HJC =
p2

2m
− h̄1aσ

†σ − h̄1ca
†a − ih̄g0 cos(k)(σ †a − a†σ) − ih̄η(a − a†), (1)

where1a = ωp − ωa and1c = ωp − ωc are the pump–atom and pump–cavity detunings,a (a†)
the annihilation (creation) operator of a cavity photon at frequencyωc, fulfilling the
commutation relation [a, a†] = 1, and σ = |g〉〈e|, σ †

= |e〉〈g| are the dipole lowering and
raising operators. Spontaneous emission of the atomic dipole at rateγ and cavity losses at
rateκ are described within the quantum Langevin equations formalism, such that the quantum
Heisenberg–Langevin equations for the dipole and cavity operators read [1]

ȧ(t) = (i1c − κ)a(t) + g(x)σ (t) +η +
√

2κain(t), (2)

σ̇ (t) =

[
i1a −

γ

2

]
σ(t) + g(x)σza +

√
γ σz f in(t), (3)

σ̇z(t) = 2g(x)
[
σ †a + a†σ

]
− γ (σz(t) + 1) /2 + 2

√
γ
(
σ † f in + f in†σ

)
, (4)

whereσz = σ †σ − σσ † andain, f in are the input noise operators, whose mean value vanishes
and which areδ-correlated in time, namely,

〈ain(t)ain(t ′)†
〉 = δ(t − t ′), (5)
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〈 f in(t) f in(t ′)†
〉 = δ(t − t ′). (6)

At large atom–pump detuning the adiabatic elimination of the excited atomic state can
be performed. Assuming that the changes in the atomic position are negligible on the timescale
in which the atom reaches its internal steady state, namely whenkBT � h̄|1a|, we solve
the Heisenberg–Langevin equations at a fixed value of the atomic positionx. Hence, for
|1a| � g0

√
〈n〉, γ and|1c|, we setσz(t) ≈ −1 in the equations, and obtainσ †

≈ ig(x)a†/1a.
After tracing out the internal degrees of freedom, the single-particle Hamiltonian for cavity and
atomic center-of-mass degrees of freedom reads

H0 =
p̂2

2m
+ h̄

[
U0 cos2(kx̂) − 1c

]
â†â − ih̄η(â − â†), (7)

where we have used the explicit form of the cavity spatial mode function, and

U0 = g2
0/1a, (8)

is the depth of the single-photon dipole potential.

2.2. Many-body dynamics

We now extend the previous model and derive the corresponding effective Hamiltonian for a
gas of N bosons at ultralow temperatures. The particle interactions are modeled bys-wave
scattering. We introduce the field operators9 j (x) and9

†
j (x), with j = g, e labeling the internal

ground state, such that

[9 j (x), 9
†
i (x

′)] = δi j δ(x − x′), (9)

[9 j (x), 9i (x
′)] = [9†

j (x), 9
†
i (x

′)] = 0. (10)

In second quantization the Hamiltonian (1) becomesH and is decomposed according to
H=H0 +H1, where

H0 =

∑
j =g,e

∫
dx 9

†
j (x)

(
−

h̄2
∇

2

2m
+

1

2
u j 9

†
j (x)9 j (x)

)
9 j (x), (11)

with u j the strength of the onsite interaction depending on the atomic state, and

H1 = −h̄1ca
†a − ih̄η(a − a†) − h̄1a

∫
dx9†

e(x)9e(x)

−ih̄g0

∫
dx cos(kx)

[
9†

e(x)9g(x)a − a†9†
g(x)9e(x)

]
. (12)

In the above description we omit to write the Hamiltonian term describing the collisions between
atoms in different internal states, as we will consider that the excited state is essentially empty
in the parameter regime we choose. The quantum Heisenberg–Langevin equations for atomic
and field operators read

9̇g(x) = −
i

h̄
[9g(x),H0] + g0 cos(kx)a†9e(x) −

√
γ f in†9e(x), (13)

9̇e(x) = −
i

h̄
[9e(x),H0] + i1a9e(x) − g0 cos(kx)9g(x)a −

γ

2
9e(x) +

√
γ9g(x) f in (14)
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ȧ = (i1c − κ)a +η +
√

2κain + g0

∫
dx cos(kx)9†

g(x)9e(x), (15)

where f in(t) and ain(t) are the noise operators defined in the previous section. Solving the
equation for9e(x, t) in the limit of large detuning,|1a| � γ, g0

√
〈n〉, we find

9e(x) ∼ −i
g0 cos(kx)

1a
9g(x)a, (16)

where the adiabatic approximation lies on the assumption that|h̄1a| > |kBT |, as in the single-
particle case, and we have neglected the input noise term, assuming the decay rateγ � |1a|.
Substituting this value into equation (15), the Heisenberg–Langevin equation for the field is
given by

ȧ = (i1c − κ)a +η +
√

2κain
− iU0Ya,

where

Y =

∫
dx cos2(kx)9†

g(x)9g(x), (17)

is the integral of the density of atoms in the electronic ground state, weighted by the cavity
spatial-mode function squared. We now assume the bad-cavity limit, namely the cavity field
relaxes to the steady state on a much faster timescale than the one on which the density of
the atomic medium varies. This limit impliesκ � kBT/h̄, and consistency with the previous
assumption imposes|1a| � κ � kBT/h̄. In this limit, the dependence of the field on the initial
condition is negligible, and its solution is essentially the inhomogeneous one that can be
written as

a ' ηF(Y). (18)

Here, we have discarded the input-noise terms, as they are at higher-order in the perturbative
expansion and we will be dealing with normally-ordered equations, so that two-time correlations
of the noise operators vanish, see equation (5). We also introduced the operator

F(Y) =
1

κ − i(1c −U0Y)
, (19)

which is a function of the atom operators in the ground state. Substituting equation (18) into the
equation for the ground-state field operator we obtain

9̇g = −
i

h̄
[9g(x),H0] − iC(Y, x), (20)

where

C(Y, x) = η2U0 cos2(kx)F†(Y)9g(x)F(Y). (21)

2.3. Discussion

Equation (20) shows explicitly the effect of the coupling with the resonator on the atom
dynamics: the coupling to the common cavity mode induces a non-linear interaction, which
enters the equation through operator (19). It is useful to consider the average number of photons
at steady statenph = 〈a†a〉St, which we obtain from equation (18) and reads

nph =

〈
η2

κ2 + (1c −U0Y)2

〉
. (22)
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The average number of photonsnph hence depends on the atomic density distribution. On
the other hand, it determines the depth of the confining potential,|V | ≈ h̄U0|nph|, and thus
the atomic density distribution. In particular, the confining potential reaches a maximum for
the values at which the denominator of equation (22) is minimum. From the form of operator
(18) one infers thatnph can reach the maximum value when the parameters1c andU0 have
the same sign (the operatorY is positive valued). From equation (8) this requires that the
detunings1c and 1a have equal signs. This property highlights the role of the detuning in
the dynamics as control parameters.

We now comment on the parameters required for accessing the regime in which the effect
of the non-linearity will be important, and its consistency with the derivation we performed.
We first review the important assumptions on which our model is based. Spontaneous decay is
neglected over the typical timescales of the system. This imposes that the effective spontaneous
scattering rateγ ′, due to off-resonant excitation of the dipole transition, fulfills the inequality
γ ′

� κ. Using thatγ ′
∼ nphg2

0γ /12
a, where nph is the mean value of intracavity photons,

equation (22), then spontaneous emission can be neglected provided that

nph
g2

0

12
a

γ

2
� κ. (23)

As our model is based on a single-mode cavity, we also require that the detuning between atom
and cavity mode is smaller than the free spectral rangeδω. This reduces to the condition

|1a| � δω. (24)

A further important assumption relies on the relaxation time of the cavity field, which has to be
much faster than the typical timescale of atomic motion. This can be estimated askBT � h̄κ.
Finally, in order to ensure that the non-linear effect onnph is sufficiently large for a small
number of atoms, we have required thatU0 ∼ κ. This condition is however not strictly necessary:
strong nonlinear effects can be observed for smaller values ofU0 when the number of atoms is
sufficiently large [3].

Let us now estimate the number of intracavity photons which are usually needed, in order
to find the atoms in the MI state. We consider specifically the case in which overlap (bistability)
regions between different Mott zone can be observed. In section4.2, we find that this occurs
at values of the pump amplitudeη ∼ 20κ. This value was evaluated for 50–100 atoms in the
resonator. Correspondingly, the number of intracavity photons isnph ∼ 100. From condition (23)
we find thatγ � 2|1a|/nph, where we usedU0 = κ, and which is fulfilled forγ = 2π × 3 MHz
and|1a| = 2π × 10 GHz. Condition (24) is then satisfied when the free spectral rangeδω is of
the order of terahertz. Once|1a| is fixed, we find thatg0 ∼ 2× 0.1

√
κ/2π MHz. Using the value

κ = 2π × 53 MHz [16], this requiresg0 ∼ 2π × 700 MHz, which is presently at the border of the
experimental reach. However, for smaller values ofU0, sayU0 ∼ 0.1κ, and for larger numbers
of atoms, sayN ∼ 1000, the peculiar CQED effects on ultracold atoms we predict in this work
could be well observed for parameter regimes of present experiments, see for instance [22].

3. The BH Hamiltonian

3.1. Derivation of the BH model

We now derive a BH type of model for the dynamics of the atoms in their self-sustained
potential when the atoms are well localized in the minima of the potential itself. Starting from
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the assumption that the atoms are in a MI state, we decompose the atomic field operator into the
operatorsb†

i andbi , which create and annihilate, respectively, atoms at the lowest band of the
potential site centered atx = xi , according to

9̂(x) =

∑
i

w̃ (x − xi ) b̂i, (25)

whereby w̃(x − xi ) are Wannier functions, which are to be determined by solving self-
consistently the equations of motion. The commutation rules of operatorsbi , b†

i obey the bosonic
commutation relations in the regular BH model, where the potential is independent of the state
of the atoms. We will show that in our case this is nota priori warranted, due to the non-linear
dependence of the potential on the atomic density distribution, which gives rise to a non-linear
equation for the atomic wave function. However, the bosonic commutation relations are still
recovered in a properly defined thermodynamic limit, which we will identify.

We now rewrite equation (20) within this Wannier decomposition,

ḃ` =
1

ih̄

[
b`,H(BH)

0

]
− iC, (26)

whereH(BH)

0 andC are obtained fromH0 andC, respectively, using the BH decomposition. They
read

H(BH)

0 = E0N̂ + E1B̂ +
U

2

∑
i

b†
i b†

i bi bi − µN̂ (27)

and

C = U0η
2F†(Ŷ)

[
J0b` + J1(b`+1 + b`−1)

]
F(Ŷ). (28)

The coupling matrix elements in equations (27) and (28) read

El = −
h̄2

2m

∫
dx w̃(x − xi )

∗
∇

2w̃(x − xi +l ), (29)

Jl =

∫
dx w̃ (x − xi )

∗ cos2 (kx) w̃ (x − xi +l ), (30)

U = ug

∫
dx |w̃ (x)|

4
, (31)

with l = 0, 1 as we keep only on-site and nearest-neighbor couplings. In equation (28) we
introduced the operator

F(Ŷ) =
1

κ − i(1c −U0Ŷ)
, (32)

where operator̂Y is the BH decomposition ofY, equation (17), after neglecting couplings
beyond the nearest neighbors, and takes the formŶ = J0N̂ + J1B̂.

In order to determine the BH Hamiltonian, we now derive an effective HamiltonianHBH

such thatC = [b`,HBH]/h̄. This is performed in the limit in which we can expand operator
F in equation (32) in the small quantityJ1. The details of the derivation are reported in
appendixA. The BH model is recovered for a large number of atoms, according to a properly
defined thermodynamic limit. We define the thermodynamic limit by lettingN and the cavity
volume go to infinity, keeping the number of atoms per potential site finite. This implies the
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scalingU0 ∼ 1/N. Additionally, we impose the scalingη ∼
√

N, which corresponds to keeping
the potential depth constant asN increases. This scaling corresponds to ramping up the pump
intensity with

√
N. The BH type of HamiltonianHeff =H(BH)

0 +HBH is then

Heff = E0N̂ +
U

2

∑
i

n̂i (n̂i − 1) − t (N̂)B + f (N̂) − µN̂, (33)

where

t (N̂) = −E1 − h̄η2U0J1F†(J0N̂)F(J0N̂), (34)

f (N̂) =
h̄η2

κ
arctan

(
1c −U0J0N̂

κ

)
. (35)

We notice that the coefficients of Hamiltonian (33) are operator-valued, hence imposing a
Wannier expansion such that the coefficients depend on the operatorN̂, namely

w̃(x − xi ) = w(N̂, x − xi ).

Hence, the commutation relations between the operatorsbi are not the ones of bosonic operators
as in the typical BH model. Nevertheless, in the thermodynamic limit one finds

[bi , b†
j ] = δi j +O(1/N). (36)

We therefore perform the Wannier expansion in this thermodynamic limit, consistently with the
assumptions made in order to obtain Hamiltonian (33).

3.2. The BH Hamiltonian

We now rescale Hamiltonian (33) in units of the strength of the on-site interactionU , which is

defined in equation (31). The rescaled Hamiltonianˆ̃H = Ĥ/U reads

ˆ̃H = −t̃ B̂ +
1

2

∑
i

n̂i (n̂i − 1) − µ̃N̂, (37)

where

µ̃ =
µ + E0

U
+

f (N̂)

N̂U
(38)

contains a rescaled chemical potential, while the tunnel parameter

t̃ = −
E1

U
−

h̄η2U0J1

U
(
κ2 + ζ 2

) , (39)

is expressed in terms of the coefficient

ζ = 1c −U0J0N̂. (40)

The higher-order terms inJ1B̂, describing long-range interaction, have been neglected. Note that

the number of particles is conserved since [N̂,
ˆ̃H ] = 0. We also remark that the termf (N)/N

tends to a constant and finite value in the thermodynamic limit.
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An important physical quantity, which will be useful for the following study, is the
depth V of the cavity potential,V = h̄U0nph with nph the number of photons in the BH
expansion, equation (22). At leading order in the expansion inJ1 it takes the form

V =
η2h̄U0

κ2 + ζ 2
. (41)

Hamiltonian (37) and potential (41) are the starting points of our analysis for the determination
of the system ground state.

Let us now make some considerations about the system for a fixed number of atomsN.
From the form of the potential (41), and in particular from the form of the coefficientζ ,
equation (40), we observe that for equal signs of the detunings1a and1c one can have thatζ
vanishes. This case corresponds to driving the system on resonance, and gives a maximum of
the cavity mode potential. This resonance situation occurs for atom numbersN that maximize
the photon number, and gives rise to bistability [3], which modifies substantially the properties
of the model with respect to the standard BH one.

4. Determination of the ground state

In this section, we determine the ground state of the system for a fixed number of particles.
Moreover, we discuss the situation when the number of atoms is fluctuating. Our purpose is to
identify the parameter regime in which the atoms are in the MI state.

Starting from the assumption that the system is in the MI state, we use thestrong coupling
expansion[34] to verify its validity. In particular, we apply a standard degenerate perturbative
calculation in the parametert̃ = t/U , and determine the ground-state energyEM(n0, µ̃, t̃) for
the Mott state withn0 particles per site, and the ground-state energiesE±(n0, µ̃, t̃) when one
particle is added to or subtracted from then0th Mott state. The condition

EM(n0, µ̃, t̃) − E±(n0, µ̃, t̃) = 0 (42)

determines the boundaries̃µ±(n0) of the n0th Mott phase as a function of the coupling
parameter. For̃µ+(n0) > µ̃−(n0) the region between the two chemical potentials determines the
Mott zone. The Mott state gets unstable as the parameters are varied such thatµ̃+(n0) = µ̃−(n0)

and finallyµ̃+(n0) < µ̃−(n0). In this section, we determine the boundaries of the Mott state in a
diagram, in which we plot̃µ as a function of relevant parameters. We remark that, in the typical
BH model, when the system exits the Mott phase, then it is in a SF state. In our case, this is
probably verified in most cases, which we will discuss individually.

Finally, the parameter̃t can be controlled by varying the pump amplitudeη, which is
straightforwardly related to the number of photons inside the cavity and hence to the height
of the potential. Alternatively it can be changed by varying the atom–pump detuning1a and
the cavity–pump detuning1c, which enter the dynamics through the coefficient (40) in the
denominator of equation (39), and correspond to changing the refractive index of the atomic
medium.

In the following, we first study the functional dependence of the integrals on the system
parameters using the Gaussian ansatz. We then determine numerically the regions of the MI state
in the diagram where the chemical potentialµ̃ is studied as a function of the pump intensityη.
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4.1. Coefficients in the Gaussian approximation

We determine the boundaries of the MI regions using theGaussian approximation, hence
replacing the Wannier functions by Gaussian functions in the integrals (29)–(31). Thus, the
Wannier functions are replaced with Gaussian functions such that

w̃(x − xi ) ≈ w̃G(x − xi ) ≡
(
πσ 2

)−1/4
e(x−xi )

2/2σ 2
, (43)

whereσ is the width to be determined. This treatment allows us to identify the dependence of
the coefficients on the physical parameters, reproducing with good approximation the results
obtained with the Wannier functions in the parameter regimes we discuss in section4.3. In
particular, we modify the Gaussian functions in order to fulfill the orthogonality condition,∫

dxw̃′

G(x − xi )w̃
′

G(x − x j ) = δi j .

In this way we avoid small, but unphysical contributions. LetK be the number of lattice sites.
The widthσ of the Gaussian functions is found from the depthV of the cavity-mode potential,
equation (41). In particular,σ 2

= h̄/
√

2m|V |k. In order to determine the boundaries of the Mott
states in the diagram of̃µ as a function ofη, we determine the coefficients for the three cases (i)
N = Kn0 + 1, (ii) N = Kn0 and (iii) N = Kn0 − 1, and introduce the subscript(i ) with i = 1, 2
and 3 for the corresponding coefficient. We evaluate the integrals in equations (29)–(31) for
these three cases and express them as a function of the dimensionless parameter

y(i ) = k2σ 2
(i ) =

√
Er/|V(i )|, (44)

whereEr is the recoil energy. In terms ofy(i ), they read

E0(i ) =
Er

2y(i )
, (45)

J±

0(i ) =
1
2

[
1− sign(1a) exp

(
−y(i )

)]
, (46)

E1(i ) = −
|V(i )|

4
exp

(
−

π2

4y(i )

) (
2y(i ) +π2

)
, (47)

J±

1(i ) =
sign(1a)

2
exp

(
−

π2

4y(i )
− y(i )

)
, (48)

U(i ) =
4Eras

√
2π1yz

y(i ), (49)

whereas is the scattering length,1yz is the atomic wave packet transverse width and the sign±

depends on the sign of1a. In the limit J±

0(i ) � |J±

1(i )| the potential amplitude according to (41)
is given by

V(i ) =
η2h̄U0

κ2 +
(
1c −U0J±

0(i )N
)2 . (50)

As J±

0(i ) depends onV(i ) which, on the other hand, depends itself onJ±

0(i ), the above equations
must be solved self-consistently. This is a consequence of the atom-density dependence on
the coupling parameters. In particular, for1a > 0 (atoms at the nodes),J0(i ) → 0 in the strong
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pumping limit,η → ∞, and the results become independent of the number of atoms. On the
other hand, if1a < 0 (atoms at the antinodes) the parameterJ0(i ) → 1 for sufficiently large
pumping, and the non-linearity is strongest.

Within this treatment we determine the nearest-neighbor coupling parameter, which is
given by

t̃(i ) =
Er

4U
y−3/2
(i ) e−π2/4y(i )

(
2y(i ) +π2

− 2e−y(i )
)
, (51)

whereU =2h̄2ask/(
√

2πm1yz). Forη→∞ the potential|V(i )|→∞ and consequentlyy(i ) →0,
and hencẽt → 0.6

The perturbative calculation of the boundariesµ̃±(n0) is sketched in the appendixB. At
third-order the result reads

µ̃+(n0) = n0 +
U(12)

2
Kn0(n0 − 1) − t(1)2(n0 + 1) + t2

(1)n
2
0 −

(
t2
(1) − t2

(2)

U(2)

U(1)

)
2Kn0(n0 + 1)

+ t3
(1)n0(n0 + 1)(n0 + 2), (52)

µ̃−(n0) = (n0 − 1) −
U(32)

2
Kn0(n0 − 1) + t(3)2n0 − t2

(3)(n0 + 1)2

+

(
t2
(3) − t2

(2)

U(2)

U(3)

)
2Kn0(n0 + 1) + t3

(3)n0(n0 + 1)(n0 − 1). (53)

Here,U(i 2) = 1−U(2)/U(i ), µ̃+(n0) = µ+(n0)/U(1) andµ̃−(n0) = µ−(n0)/U(3).

4.2. Numerical results

In this section, we study the regions of the MI state as a function of the chemical potential and
of the inverse pump amplitudeη−1. The boundaries are determined by numerical evaluation of
equations (29)–(31) using the modified Gaussian functions. The atomic parameters we choose
correspond to87Rb atoms with scattering lengthas = 5.77 nm and atomic transition wavelength
λ = 830 nm. The optical potential hasK lattice sites and the transverse width of the atomic wave
packet is1y = 1z =

√
1yz = 30 nm. We evaluate the ‘phase diagrams’ forK = 50–10 000 at

fixed number of atomsN, scalingN so as to keep the atomic density constant. The results for the
Mott zones agree over the whole range of values, so in the figures we report the ones obtained
for K = 50 for different values of the detunings.

Figure1 displays the first four Mott zones for (a)1a < 0 and1c = κ and (b)1a > 0 and
1c = 0, as a function of the dimensionless parameterκ/η. Interestingly, the extension of the
Mott zones seems to decrease roughly asn−1

0 in both cases. We first analyze the case displayed
in figure1(a). For1a < 0 the atoms are trapped at the maxima of the intracavity field. Hence,
the coupling with the cavity mode is maximum when the confinement is very tight. Here, for
large values of the pump intensity (i.e. for small values ofκ/η) the Mott zones at different values
of n0 show some overlap. This overlap is a CQED effect, in fact Mott states with larger number
of atoms per site are favored as they increase the coupling strength to the cavity mode, and thus
the depth of the potential. The overlap is only at the border of the boundaries, as atom–atom
collisions compete with this effect. In figure1(b) the detuning1a > 0, and the atoms are hence

6 In the opposite limit of small pumping we also havet̃ → 0, which, however, is within the regime where the
Gaussian and the tight-binding approximations are not valid.
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Figure 1. Phase diagram, showing the Mott zones in the scaled chemical
potential–cavity pump planẽµ–η−1. The parameters are (a)U0 = −5κ (1a < 0,
atoms at the antinodes),1c = 2κ and (b)U0 = 5κ (1a > 0, atoms at the nodes),
1c = 0. The overlap and reappearance of the Mott zones originate from the non-
linearity of the system. The dotted lines correspond to the boundaries of the
covered zones.

trapped at the nodes (the zeroes) of the intracavity field. Hence, the coupling with the cavity
mode is minimum whenη → ∞. Indeed, here we observe that for large values ofη (small
values ofκ/η), the Mott zones almost do not overlap. However, for smaller values ofη they
exhibit ‘exotic’ behavior: overlap, disappear and reappear.

Further insight is gained in figure2, where we study the depth of the cavity potential
as a function of the pump parameters. The curves displayed in figure2(a) correspond to the
parameters of the phase diagram in figure1(a). Here, one observes that the potential amplitude
increases monotonically asV ∼ η2 in the parameter regime where the non-linearity is weak.
Correspondingly, the widthσ(i ) of the Wannier functions, giving atomic localization at the
minima of the potential, decreases smoothly asσ(i ) ∝ |V(i )|

−1/4
∼ 1/

√
η, see equation (44).

For larger pump strengths, when the non-linearity becomes important, the behavior is slightly
changed. The curves in figure2(b) correspond to the parameters of the phase diagram in
figure1(b). Here, one finds that the potential depth increases rapidly where the corresponding
Mott zones exhibit a minimum in the value ofµ̃. Correspondingly, the widthσ(i ) ∝ |V(i )|

−1/4
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Figure 2. The potential amplitude|V(i )|, in units of Er and in log-scale, as a
function of the inverse pumpingκ/η, where the curves in (a) and (b) have been
evaluated in the parameter regimes of figures1(a) and (b), respectively. When
the non-linearity is strong the potential amplitudes differ from the linear situation
where|V | ∼ η2. The average number of cavity photons is found by multiplying
the rescaled potential depths in the plots by the factorfn = Er/|h̄U0|, which here
is fn ≈ 0.006.

diminishes rapidly. This behavior changes at the value ofη where the potential gradient
increases abruptly. In this regimeσi varies very slowly. This can be understood as a competition
between the cavity field, which tends to localize the atoms at the minima, and the atomic
quantum fluctuations: when the potential is sufficiently high to trap the atoms within a small
fraction of the wave length, the cavity field is pumped more effectively.

We now consider the situation in which the detunings1a and1c have the same sign. In
this case the parameterζ(N) in equation (40) vanishes when the conditionJ±

0(i ) = 1c/U0N
is fulfilled, whereby 0< J+

0(i ) < 1/2 and 1/2 < J−

0(i ) < 1, see equation (46). This resonance
condition gives rise to bistability, leading to an abrupt change of the potential depth. As a
consequence, the Mott state may become unstable. The upper plot of figure3 displays the
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Figure 3. The bistability behavior of the potential amplitudesV(i ) as a function
of κ/η (upper plot) and corresponding phase diagramµ̃ − η−1 (lower plot) for
1c = −45κ andU0 = −κ. At n0 = 1 the Mott region suddenly ends forη ∼ κ,
where the corresponding potentialV(i ) jumps to a lower value. Here, the system
most likely is in a state where higher Bloch bands are populated, due to non-
adiabatic effects and the small potential depth of this solution.

potential amplitudesV(i )/Er for one atom per site as a function ofη/κ for U0 = −κ and
1c = −45κ, exhibiting the typical functional behavior of bistability. The lower plot displays
the corresponding phase diagram. For the case of one atom per site, the Mott ground state
will suddenly disappear forη ∼ κ when the pumping is adiabatically lowered. Clearly the first
‘jump’ occurs in the potentialV(i ) (corresponding to the lowest atom density), and comparing
the two plots one finds that this takes place exactly when the first Mott zone suddenly ends. The
system most likely jumps into a state where higher Bloch bands are populated. In this case the
single-band and Gaussian approximations break down.

The overlapping of the Mott zones and the bistability, which we observe in the phase
diagram, are novel features when compared with the typical scenario of cold atomic gases
trapped by an external potential. Let us first discuss the existence and uniqueness of the
ground state. When the MI state is stable, given the number of atomsN, the ground state is
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Figure 4. Extended phase diagram of figure1(a), where the atomic densityρ has
been included as a third axis. Here, the contour lines correspond to a fixed atom
densityρ, such that for a givenρ the scaled chemical potential depends on the
pumping strengthη according to this particular contour line. The dotted contour
curves indicate the lines with exactlyn0 atoms per site. The projection of the
Mott-zones on to thẽµ–η−1 plane is shown.

fully determined once the atomic densityρ = N/K is fixed. Outside the Mott zones we expect
superfluidity in the parameter regimes in which there cannot be optical bistability (detunings
with opposite signs). In the situation of multiple solutions of the equations (45)–(49), the system
will most likely be found in the one solution which minimizes the energy.

A more complete picture of the phase diagram can be obtained by considering the
dependence on the atomic density. The strong coupling method for higher orders is cumbersome
once the number of particles added to/subtracted from the Mott states becomes larger than one.
However, the first-order corrections are still easily obtainable for any atom number. In figure4
we present schematically the extended phase diagram of figure1(a) where the atomic density
has been included as a third axis. This diagram has been obtained by fitting the intermediate
lines between the Mott zones, and by verifying that it reproduces the first-order calculations for
small values ofκ/η. We remark that the ‘overhangs’, corresponding to the overlapping zones in
figure1(a), constitute the novel feature, which we encounter in this model as compared to the
standard BH model.

When the number of atoms is not fixed [35], the atomic density may take multiple values
where the phase diagram exhibits ‘overhangs’. For sufficiently long times, we expect that the
system will be found in the number of atoms such that the energy is minimized. This implies
also that there may be a competition between a Mott and a SF state at two different values of the
density, which happen to be at similar energies. Keeping this situation in mind, we restrict our
analysis to different and overlapping Mott states, and compare their energy. Figure5 displays a
phase diagram on thẽµ–η−1 plane, whereby the Mott states with higher energy are plotted on
top of the ones with lower energy. We observe that for large pumping strengths the Mott states
with a higher number of atomsn0 have in general a greater energy, while for lower or moderate
pumping strengths this is not necessarily true. For example, the end of the Mott zone withn0 = 4
has smaller energy than the corresponding one forn0 = 3. This is a pure CQED effect.
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Figure 5. Phase diagram on thẽµ–η−1 plane, reporting the first four Mott zones.
The Mott states with higher energy are plotted on top of the ones with lower
energy. Typically, for large pumping the Mott zones with a large number of atoms
n0 per site have the highest energy. For moderate pumping this is not necessarily
true as seen by comparing for example the third and fourth Mott zones at around
κ/η ≈ 0.05. The relevant parameters are reported in the inset.

4.3. Validity of the approximations

We now discuss the regime of validity of the calculations, from which we extracted the phase
diagrams presented in this section. The derivation of the system coupling parameters relies
on the assumptionJ0 � |J±

1 |. The maximum value of the ratio|J±

1 |/J0 ≈ 0.056 occurs at
|V | ≈ Er/2, hence the nearest-neighbor coupling is at least 17 times smaller than the on site
coupling. The expansion to first-order inJ1B of equation (32) is motivated for any number of
atoms since the perturbative parameterλ ≡ J1B̂/J0N̂ ∼ J1/J0 is strictly smaller than unity.

The values of the chemical potential, as in equation (52), are derived from a third-order
perturbation expansion in the parametert̃ = t/U and it is expected to break down for larget̃ .
We verified that in general̃t < 0.25. Moreover, we compared the phase diagrams with the
ones obtained by truncating at the second-order int̃ , and could verify that they do not differ
substantially one from the other. We remark that the perturbation calculations are carried out
assuming periodic boundary conditions, while the system here studied has a fixed number of
sites,K = 50. We checked the validity of the assumption by comparing the results obtained for
different lattice sites, up to 10 000, keeping the density fixed.

As concerns the tight-binding approximation (i.e. only including nearest neighbor cou-
plings), the single-band approximation (i.e. expanding the field operators9(x̂) and9†(x̂′) using
only the lowest band Wannier functions), these are both related to the regime of validity of the
Gaussian approximation. Within this approximation one finds|J1/Jn| = exp[(n2

− 1)π2

4y ] � 1,
also indicating validity of the tight-binding approximation in this regime. Figure6(a) displays
the difference1 − 1TBA between the width1 of the first Bloch band, obtained from diagonal-
ization of the single-particle Hamiltonian in equation (7), and the width1TBA evaluated with the
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Figure 6. Check of the validity of the involved approximations. The upper figure
shows the difference1 − 1TBA, in units of Er, as a function ofy−1, where1

is the width of the first energy band and1TBA = 2tW, with tW the coupling
element obtained from the corresponding Wannier functions in the tight-binding
approximation. The lower figure displaystW − tG as a function ofy−1, wheretG
is the coupling element given by the Gaussian approximation. The quantities are
numerically derived from Hamiltonian (7), where, in scaled units, there is only
a single parameter of interest, namely the dimensionless potential amplitude or
equivalentlyy.

tight-binding approximation, as a function ofy−1. Figure6(b) displays the difference between
the coupling parameters obtained by using the Wannier functions and the modified Gaussian
functions as a function ofy−1. We note that for valuesy−1 < 1 the validity of both the tight
binding and Gaussian approximations visibly breaks down. This has also been verified by recal-
culating some of the above phase diagrams using the Wannier functions.

5. Conclusions

We have shown that ultracold bosonic atoms inside a resonator may form stable insulator-like
states, and thus enter the Mott phase, which is sustained by and sustains the cavity potential.
The low temperature properties of the system are determined by the competition between the
quantum electrodynamic effects and the quantum fluctuations of the atomic matter waves.
This competition gives rise to a non-trivial dependence of the regions of stability and of the
collective atomic states on the system parameters. Since the cavity potential depends on the state
of the atoms, the behavior of the ultracold atomic gas in the cavity hence differs significantly
from the one which is encountered in open space. We have derived the BH Hamiltonian for
the cavity confined system, and have shown that the coefficients of this Hamiltonian depend
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explicitly on the number of atoms. We have determined regions of parameters where the atomic
insulator states are stable, predicting the existence of overlapping stability regions for competing
Mott states. Bistable behavior is encountered in the vicinity of the shifted cavity resonance,
controlled by the pump parameters.

Our theory allows us to determine the state of the atoms when their number is fixed, while
for fluctuating, non-fixed atom number, in general, the system will choose the state of minimum
energy. This will also take place when an external inhomogeneous potential, such as a harmonic
trap potential, is additionally applied to the atoms. In such a case we envision the possibility
of hysteresis effects in the harmonic potential, when the frequency of this potential is slowly
increased and, subsequently, slowly decreased. However, the question, how the presence of an
inhomogeneous potential will modify the insulator-like states, requires further careful studies,
since the state of the system depends in a highly non-trivial way on global parameters, which
in turn determine the local density of the atoms and the intracavity field. The condition that
atoms may locally affect the potential, hence giving rise to phonon-like features ([36] and
references therein), may be reached in multi-mode resonators, allowing for localized polaritonic
excitations [37, 38]. Further novel features are expected when fermions are considered instead
of bosons. These questions will be tackled in future works.
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Appendix A. Derivation of the effective Hamiltonian

We consider equation (26), and rewrite it as

ḃ` =
1

ih̄
[b`,H0] − iC, (A.1)

where C is defined in equation (28) and Ŷ = J0N̂ + J1B̂. We aim at finding an effective
HamiltonianHBH of the BH form, such that

C = [b`,HBH]/h̄,

in some thermodynamic limit to be identified.
We now expand operatorC at first order inJ1, assumingJ1 � J0, as is verified in the MI

state, using [̂N, B̂] = 0 and

F(J0N̂ + J1B̂) ≈ F(J0N̂) + J1B̂F′(J0N̂), (A.2)
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where we have introduced the notation

F ′(J0N̂) =
∂

∂y
F(y)

∣∣∣
y=J0N̂

. (A.3)

At first order inJ1, we find

C = U0η
2F†(J0N̂)[ J0b` + J1(b`+1 + b`−1)]F(J0N̂) +U0η

2F ′†(J0N̂)J1B J0b`F(J0N̂)

+U0η
2F†(J0N̂)J0b` J1BF′(J0N̂) +O(J2

1 ).

Let us now consider the commutation relations between the various operators entering this
expression. We note that

[b`, F(J0N̂)] = (F(J0(N̂ + 1)) − F(J0N̂))b`

= F ′(J0N̂)J0b` + O(1/N2) (A.4)

and it is hence of order 1/N. Similarly, the commutator [b`, B] = b`+1 + b`−1 is at higher order
in the expansion in 1/N. Henceforth, we can rewrite

C = U0η
2F†(J0N̂)

[
J0b` + J1(b`+1 + b`−1)

]
F(J0N̂) +U0η

2F
′†(J0N̂)J0b` J1BF(J0N̂)

+U0η
2F†(J0N̂)J1B J0b`F ′(J0N̂)

≡ [b`,HBH],

where

HBH = h̄η2U0J1F†(J0N̂)BF(J0N̂) + G(J0N̂) (A.5)

and operatorG(J0N̂) has to be determined from the equation

[b`, G(J0N̂)] + U0η
2F†(J0N̂)J0b`F(J0N̂) = 0, (A.6)

which is valid at the considered order in the expansion in 1/N. At leading order in 1/N,
equation (A.5) is a differential equation, such thatG′(J0N̂) = −U0η

2F†(J0N̂)F(J0N̂). Using
the explicit form of operatorF(x), equation (32), we find

G′(x) = −U0η
2/(κ2 + (1c −U0x)2),

which gives

G(x) =
η2

κ
arctan

(
1c −U0x

κ

)
(A.7)

and finally the effective Hamiltonian in equation (33).

Appendix B. Perturbative derivation of the zone boundaries

We consider Hamiltonian

H = −t̃(N̂)B̂ +
U (N̂)

2

K∑
i =1

n̂i (n̂i − 1) − µ̃N̂, (B.1)
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as given in equation (37). This Hamiltonian differs from the standard BH Hamiltonian, as the
coefficients depend on the operatorN̂. We apply now to equation (B.1) the method of [34],
which allows the determination of the region of stability of the MI states. The method consists
in a perturbative expansion in the parametert̃ , which is assumed to be small within the parameter
regime of interest. In this limit, for large on site interaction strengthU (hard core limit), in the
optical lattice the configuration which is energetically favorable has the smallest number of
atoms per site. For a lattice ofK sites andN = Kn0 + j atoms, withj < K , there will be either
n0 or n0 + 1 atoms per site. Clearly, whenN = Kn0 atoms (j = 0), there exists only one possible
ground state, while forN > Kn0 several ground-state configurations exist, and one has to apply
degenerate perturbation theory.

The ground state of Hamiltonian (B.1) is found after imposing periodic boundary
conditions, and diagonalizing operatorB̂ in the momentum representation. Att = 0 the ground
state forN = Kn0 is given by

|90(n0)〉 = |n0, n0, . . . , n0〉, (B.2)

corresponding ton0 atoms per site, while forN = Kn0 + j , with j > 0, they are defined by the
relation

|9 j (n0)〉 = Â†
k j
|9 j −1(n0)〉, (B.3)

where

Â†
k j

=
1

√
K

K∑
n=1

einkj a
b̂†

n√
n̂n + 1

(B.4)

creates one particle in a site starting from the lowest energy states. There is an analogous
state for one hole. Here,a = π/k is the distance between neighboring sites, and the wave
vector k j = 2π j/Ka, with j = −

K
2 , − K

2 + 1, . . . , K
2 − 1 (assumingK even for simplicity).

The ground-state energy is calculated applying perturbation theory in third order int̃ to this
unperturbed basis. Due to symmetry, only zeroth and second order in the perturbation oft (N̂)B̂
contribute to the ground-state energies of the MI state. ForN = Kn0 one finds

EM(n0) =
U(2)

2
Kn0(n0 − 1) − µ(2)Kn0−

t2
(2)

U(2)

2Kn0(n0 + 1), (B.5)

while the SF energies for the added particle/hole energies are

E+(n0) =
U(1)

2
[Kn0(n0 − 1) + 2n0] − µ(1)(Kn0 + 1) − t(1)2(n0 + 1)

−
t2
(1)

U(1)

[
2Kn0(n0 + 1) − n2

0

]
+

t3
(1)

U 2
(1)

n0(n0 + 1)(n0 + 2),

E−(n0) = −µ(3)(Kn0 − 1) +
U(3)

2
[Kn0(n0 + 1) − n0 + 1] − t(3)2n0

−
t2
(3)

U(3)

[
2Kn0(n0 + 1) − (n0 + 1)2

]
−

t3
(3)

U 2
(3)

n0(n0 + 1)(n0 − 1). (B.6)

Here, we have used the subscript(i ) corresponding to the three different cases,N = Kn0 and
N = Kn0 ± 1, see section4. The limit of stability of the MI state is found when the states
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|9M(n0)〉 and |9±(n0)〉 are degenerate. The conditionsEM(n0) − E+(n0) = 0 and EM(n0) −

E−(n0) = 0 determine the boundariesµ±(n0) of the Mott states in the phase diagram̃µ– t̃ ,
thus obtaining the results in equations (52).

References

[1] Walls D and Milburn G J 1994Quantum Optics(Berlin: Springer)
[2] Berman P R (ed) 1994Cavity Quantum Electrodynamics, Advances in Atomic, Molecular and Optical

Physics, Supplement 2(New York: Academic)
[3] Bonifacio R and Lugiato L A 1978Phys. Rev. Lett.401023

Bonifacio R and Lugiato L A 1978Lett. Nuovo Cimento21505
[4] Weidinger M, Varcoe B T H, Heerlein R and Walther H 1999Phys. Rev. Lett.823796

Varcoe B T H, Brattke S, Weidinger M and Walther H 2000Nature403743
[5] Haroche S and Raimond J M 2006Exploring the Quantum(Oxford: Oxford University Press)
[6] Schleich W P 2001Quantum Optics in Phase Space(New York: Wiley)
[7] Hood C J, Lynn T W, Doherty A C, Parkins A S and Kimble H J 2000Science2871447
[8] Pinkse P W H, Fisher T, Maunz P and Rempe G 2000Nature404365
[9] Grangier P, Reymond G and Schlosser N 2000Fortsch. Phys. Prog. Phys.48859

[10] Domokos P and Ritsch H 2002Phys. Rev. Lett.89253003
[11] Black A T, Chan H W and Vuletić V 2003Phys. Rev. Lett.91203001
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