2,530 research outputs found
Search for photons at the Pierre Auger Observatory
The Pierre Auger Observatory has a unique potential to search for ultra-high
energy photons (above ~1 EeV). First experimental limits on photons were
obtained during construction of the southern part of the Observatory.
Remarkably, already these limits have proven useful to falsify proposals about
the origin of cosmic rays, and to perform fundamental physics by constraining
Lorentz violation. A final discovery of photons at the upper end of the
electromagnetic spectrum is likely to impact various branches of physics and
astronomy.Comment: 5 pages, 5 figures. Presented at CRIS 2008, Malfa, Ital
Addendum: Ultrahigh-energy cosmic-ray bounds on nonbirefringent modified-Maxwell theory
Nonbirefringent modified-Maxwell theory, coupled to standard Dirac particles,
involves nine dimensionless parameters, which can be bounded by the inferred
absence of vacuum Cherenkov radiation for ultrahigh-energy cosmic rays
(UHECRs). With selected UHECR events, two-sided bounds on the eight
nonisotropic parameters are obtained at the 10^{-18} level, together with an
improved one-sided bound on the single isotropic parameter at the 10^{-19}
level.Comment: 5 pages with revtex
iCrawl: Improving the Freshness of Web Collections by Integrating Social Web and Focused Web Crawling
Researchers in the Digital Humanities and journalists need to monitor,
collect and analyze fresh online content regarding current events such as the
Ebola outbreak or the Ukraine crisis on demand. However, existing focused
crawling approaches only consider topical aspects while ignoring temporal
aspects and therefore cannot achieve thematically coherent and fresh Web
collections. Especially Social Media provide a rich source of fresh content,
which is not used by state-of-the-art focused crawlers. In this paper we
address the issues of enabling the collection of fresh and relevant Web and
Social Web content for a topic of interest through seamless integration of Web
and Social Media in a novel integrated focused crawler. The crawler collects
Web and Social Media content in a single system and exploits the stream of
fresh Social Media content for guiding the crawler.Comment: Published in the Proceedings of the 15th ACM/IEEE-CS Joint Conference
on Digital Libraries 201
On a possible photon origin of the most-energetic AGASA events
In this work the ultra high energy cosmic ray events recorded by the AGASA
experiment are analysed. With detailed simulations of the extensive air showers
initiated by photons, the probabilities are determined of the photonic origin
of the 6 AGASA events for which the muon densities were measured and the
reconstructed energies exceeded 10^20 eV. On this basis a new, preliminary
upper limit on the photon fraction in cosmic rays above 10^20 eV is derived and
compared to the predictions of exemplary top-down cosmic-ray origin models.Comment: 3 pages, 1 figure, 2 tables; presented at XIII ISVHECRI, Pylos,
Greec
Comparison of Hadronic Interaction Models at Auger Energies
The three hadronic interaction models DPMJET 2.55, QGSJET 01, and SIBYLL 2.1,
implemented in the air shower simulation program CORSIKA, are compared in the
energy range of interest for the Pierre Auger experiment. The model dependence
of relevant quantities in individual hadronic interactions and air showers is
investigated.Comment: Contribution to XII Int. Symp. on Very High Energy Cosmic Ray
Interactions, 4 pages, 8 figure
Characteristics of geomagnetic cascading of ultra-high energy photons at the southern and northern sites of the Pierre Auger Observatory
Cosmic-ray photons above 10^19 eV can convert in the geomagnetic field and
initiate a preshower, i.e. a particle cascade before entering the atmosphere.
We compare the preshower characteristics at the southern and northern sites of
the Pierre Auger Observatory. In addition to a shift of the preshower patterns
on the sky due to the different pointing of the local magnetic field vectors,
the fact that the northern Auger site is closer to the geomagnetic pole results
in a different energy dependence of the preshower effect: photon conversion can
start at smaller energies, but large conversion probabilitites (>90%) are
reached for the whole sky at higher energies compared to the southern Auger
site. We show how the complementary preshower features at the two sites can be
used to search for ultra-high energy photons among cosmic rays. In particular,
the different preshower characteristics at the northern Auger site may provide
an elegant and unambiguous confirmation if a photon signal is detected at the
southern site.Comment: 25 pages, 14 figures, minor changes, conclusions unchanged, Appendix
A replaced, accepted by Astroparticle Physic
Primary Particle Type of the Most Energetic Fly's Eye Air Shower
The longitudinal profile of the most energetic cosmic-ray air shower measured
so far, the event recorded by the Fly's Eye detector with a reconstructed
primary energy of about 320 EeV, is compared to simulated shower profiles. The
calculations are performed with the CORSIKA code and include primary photons
and different hadron primaries. For primary photons, preshower formation in the
geomagnetic field is additionally treated in detail. For primary hadrons, the
hadronic interaction models QGSJET01 and SIBYLL2.1 have been employed. The
predicted longitudinal profiles are compared to the observation. A method for
testing the hypothesis of a specific primary particle type against the measured
profile is described which naturally takes shower fluctuations into account.
The Fly's Eye event is compatible with any assumption of a hadron primary
between proton and iron nuclei in both interaction models, although differences
between QGSJET01 and SIBYLL2.1 in the predicted profiles of lighter nuclei
exist. The primary photon profiles differ from the data on a level of ~1.5
sigma. Although not favoured by the observation, the primary photon hypothesis
can not be rejected for this particular event.Comment: 20 pages, 8 figures; v2 matches version accepted by Astroparticle
Physic
- …