4 research outputs found

    Development of a reduced area horizontal tail for a wide body jet aircraft

    Get PDF
    Commercial transport aircraft fuel consumption can be significantly reduced by decreasing the size of the horizontal tail. Work on reducing the horizontal tail area of the L-1011 is discussed. The reduced area horizontal tail program consisted of design, fabrication and wind tunnel testing of horizontal tails with reduced planform areas of 30 to 38 percent relative to the standard L-1011 tail. The total drag of the aircraft in cruise was reduced by approximately 2 percent. However, it was necessary to impose forward center of gravity limitations on the aircraft because the maximum lift goal of the reduced area tail was not achieved and sufficient nose-up control authority was not available. On a new design this problem could have been solved by moving the landing gear aft and enlarging the cut-out in the aft fuselage to allow for larger horizontal stabilizer deflections. However, since this is an existing design, these modifications were unfeasible and resulted in the center of gravity restriction

    Development of an advanced pitch active control system for a wide body jet aircraft

    Get PDF
    An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins

    The X-33 Program, Proving Single Stage to Orbit

    Get PDF
    The X-33, NASA's flagship for reusable space plane technology demonstration, is on course to permit a crucial decision for the nation by the end of this decade. Lockheed Martin Skunk Works, NASA's partner in this effort, has led a dedicated and talented industry and government team that have met and solved numerous challenges within the first 26 months. This program began by accepting the mandate that included two unprecedented and highly challenging goals: 1) demonstrate single stage to orbit technologies in flight and ground demonstration in less than 42 months and 2) demonstrate a new government and industry management relationship working together with industry in the lead
    corecore