380 research outputs found

    Increased urine IgM excretion predicts cardiovascular events in patients with type 1 diabetes nephropathy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetic nephropathy, a major complication of diabetes, is characterized by progressive renal injury and increased cardiovascular mortality. An increased urinary albumin excretion due dysfunction of the glomerular barrier is an early sign of diabetic nephropathy. An increased urinary excretion of higher molecular weight proteins such as IgM appears with progression of glomerular injury. We aim here to study the prognostic significance of urine IgM excretion in patients with type 1 diabetes mellitus (type 1 diabetic nephropathy).</p> <p>Methods</p> <p>This is an observational study of 139 patients with type1 diabetes mellitus (79 males and 60 females) under routine care at the diabetic outpatient clinic at the Lund University Hospital. The median follow-up time was 18 years (1 to 22) years. Urine albumin and urine IgM concentration were measured at time of recruitment.</p> <p>Results</p> <p>Overall 32 (14 male and 18 female) patients died in a cardiovascular event and 20 (11 male and 9 female) patients reached end-stage renal disease. Univariate analysis indicated that patient survival and renal survival were inversely associated with urine albumin excretion (RR = 2.9 and 5.8, respectively) and urine IgM excretion (RR = 4.6 and 5.7, respectively). Stratified analysis demonstrated that in patients with different degrees of albuminuria, the cardiovascular mortality rate and the incidence of end-stage renal disease was approximately three times higher in patients with increased urine IgM excretion.</p> <p>Conclusion</p> <p>An increase in urinary IgM excretion in patients with type 1 diabetes is associated with an increased risk for cardiovascular mortality and renal failure, regardless of the degree of albuminuria.</p

    Protein Localization with Flexible DNA or RNA

    Get PDF
    Localization of activity is ubiquitous in life, and also within sub-cellular compartments. Localization provides potential advantages as different proteins involved in the same cellular process may supplement each other on a fast timescale. It might also prevent proteins from being active in other regions of the cell. However localization is at odds with the spreading of unbound molecules by diffusion. We model the cost and gain for specific enzyme activity using localization strategies based on binding to sites of intermediate specificity. While such bindings in themselves decrease the activity of the protein on its target site, they may increase protein activity if stochastic motion allows the acting protein to touch both the intermediate binding site and the specific site simultaneously. We discuss this strategy in view of recent suggestions on long non-coding RNA as a facilitator of localized activity of chromatin modifiers

    Optical coherence properties of Kramers' rare-earth ions at the nanoscale for quantum applications

    Full text link
    Rare-earth (RE) ion doped nano-materials are promising candidates for a range of quantum technology applications. Among RE ions, the so-called Kramers' ions possess spin transitions in the GHz range at low magnetic fields, which allows for high-bandwidth multimode quantum storage, fast qubit operations as well as interfacing with superconducting circuits. They also present relevant optical transitions in the infrared. In particular, Er3+^{3+} has an optical transition in the telecom band, while Nd3+^{3+} presents a high-emission-rate transition close to 890 nm. In this paper, we measure spectroscopic properties that are of relevance to using these materials in quantum technology applications. We find the inhomogeneous linewidth to be 10.7 GHz for Er3+^{3+} and 8.2 GHz for Nd3+^{3+}, and the excited state lifetime T1_1 to be 13.68 ms for Er3+^{3+} and 540 μ\mus for Nd3+^{3+}. We study the dependence of homogeneous linewidth on temperature for both samples, with the narrowest linewidth being 379 kHz (T2_2 = 839 ns) for Er3+^{3+} measured at 3 K, and 62 kHz (T2_2 = 5.14 μ\mus) for Nd3+^{3+} measured at 1.6 K. Further, we investigate time-dependent homogeneous linewidth broadening due to spectral diffusion and the dependence of homogeneous linewidth on magnetic field, in order to get additional clarity of mechanisms that can influence the coherence time. In light of our results, we discuss two applications: single qubit-state readout and a Fourier-limited single photon source.Comment: 9 pages, 5 figure

    Impact of metabolic comorbidity on the association between body mass index and heatlh-related quality of life: a Scotland-wide cross-sectional study of 5,608 participants

    Get PDF
    &lt;p/&gt;Background: The prevalence of obesity is rising in Scotland and globally. Overall, obesity is associated with increased morbidity, mortality and reduced health-related quality of life. Studies suggest that "healthy obesity" (obesity without metabolic comorbidity) may not be associated with morbidity or mortality. Its impact on health-related quality of life is unknown. &lt;p/&gt;Methods: We extracted data from the Scottish Health Survey on self-reported health-related quality of life, body mass index (BMI), demographic information and comorbidity. SF-12 responses were converted into an overall health utility score. Linear regression analyses were used to explore the association between BMI and health utility, stratified by the presence or absence of metabolic comorbidity (diabetes, hypertension, hypercholesterolemia or cardiovascular disease), and adjusted for potential confounders (age, sex and deprivation quintile). &lt;p/&gt;Results: Of the 5,608 individuals, 3,744 (66.8%) were either overweight or obese and 921 (16.4%) had metabolic comorbidity. There was an inverted U-shaped relationship whereby health utility was highest among overweight individuals and fell with increasing BMI. There was a significant interaction with metabolic comorbidity (p = 0.007). Individuals with metabolic comorbidty had lower utility scores and a steeper decline in utility with increasing BMI (morbidly obese, adjusted coefficient: -0.064, 95% CI -0.115, -0.012, p = 0.015 for metabolic comorbidity versus -0.042, 95% CI -0.067, -0.018, p = 0.001 for no metabolic comorbidity). &lt;p/&gt;Conclusions: The adverse impact of obesity on health-related quality of life is greater among individuals with metabolic comorbidity. However, increased BMI is associated with reduced health-related quality of life even in the absence of metabolic comorbidity, casting doubt on the notion of "healthy obesity"

    Visualization of Genomic Changes by Segmented Smoothing Using an L0 Penalty

    Get PDF
    Copy number variations (CNV) and allelic imbalance in tumor tissue can show strong segmentation. Their graphical presentation can be enhanced by appropriate smoothing. Existing signal and scatterplot smoothers do not respect segmentation well. We present novel algorithms that use a penalty on the norm of differences of neighboring values. Visualization is our main goal, but we compare classification performance to that of VEGA

    Quantum Computing

    Full text link
    Quantum mechanics---the theory describing the fundamental workings of nature---is famously counterintuitive: it predicts that a particle can be in two places at the same time, and that two remote particles can be inextricably and instantaneously linked. These predictions have been the topic of intense metaphysical debate ever since the theory's inception early last century. However, supreme predictive power combined with direct experimental observation of some of these unusual phenomena leave little doubt as to its fundamental correctness. In fact, without quantum mechanics we could not explain the workings of a laser, nor indeed how a fridge magnet operates. Over the last several decades quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit these unique quantum properties? Today it is understood that the answer is yes. Many research groups around the world are working towards one of the most ambitious goals humankind has ever embarked upon: a quantum computer that promises to exponentially improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for this task---ranging from single particles of light to superconducting circuits---and it is not yet clear which, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain what the major challenges are for the future.Comment: 26 pages, 7 figures, 291 references. Early draft of Nature 464, 45-53 (4 March 2010). Published version is more up-to-date and has several corrections, but is half the length with far fewer reference

    Toll-like receptors in cellular subsets of human tonsil T cells: altered expression during recurrent tonsillitis

    Get PDF
    BACKGROUND: The palatine tonsils have a pivotal role in immunological detection of airborne and ingested antigens like bacteria and viruses. They have recently been demonstrated to express Toll-like receptors (TLRs), known to recognize molecular structures on such microbes and activate innate immune responses. Their activation might also provide a link between innate and adaptive immunity. In the present study, the expression profile of TLR1-TLR10 was characterized in human tonsil T cells, focusing on differences between subsets of CD4(+ )T helper (Th) cells and CD8(+ )cytotoxic T lymphocytes (CTL). The study was also designed to compare the TLR expression in T cells from patients with recurrent tonsillitis and tonsillar hyperplasia. METHODS: Tonsils were obtained from children undergoing tonsillectomy, and classified according to the clinical diagnoses and the outcome of tonsillar core culture tests. Two groups were defined; recurrently infected tonsils and hyperplastic tonsils that served as controls. Subsets of T cells were isolated using magnetic beads. The expression of TLR transcripts in purified cells was assessed using quantitative real-time RT-PCR. The corresponding protein expression was investigated using flow cytometry and immunohistochemistry. RESULTS: T cells expressed a broad repertoire of TLRs, in which TLR1, TLR2, TLR5, TLR9 and TLR10 predominated. Also, a differential expression of TLRs in CD4(+ )and CD8(+ )T cells was obtained. TLR1 and TLR9 mRNA was expressed to a greater extent in CD4(+ )cells, whereas expression of TLR3 mRNA and protein and TLR4 protein was higher in CD8(+ )cells. CD8(+ )cells from infected tonsils expressed higher levels of TLR2, TLR3 and TLR5 compared to control. In contrast, CD4(+ )cells exhibited a down-regulated TLR9 as a consequence of infection. CONCLUSION: The present study demonstrates the presence of a broad repertoire of TLRs in T cells, a differential expression in CD4(+ )and CD8(+ )cells, along with infection-dependent alterations in TLR expression. Collectively, these results support the idea that TLRs are of importance to adaptive immune cells. It might be that TLRs have a direct role in adaptive immune reactions against infections. Thus, further functional studies of the relevance of TLR stimulation on T cells will be of importance
    corecore