7,018 research outputs found

    High throughput screening of monoamine oxidase (MAO-N-D5) substrate selectivity and rapid kinetic model generation

    Get PDF
    Full kinetic models provide insight into enzyme mechanism and kinetics and also support bioconversion process design and feasibility assessment. Previously we have established automated microwell methods for rapid data collection and hybrid kinetic modelling techniques for quantification of kinetic constants. In this work these methods are applied to explore the substrate selectivity and kinetics of monoamine oxidase, MAO-N-D5, from Aspergillus niger. In particular we examine the MAO-N-D5 variant Ile246Met/Asn336Ser/Met348Lys/Thr384Asn to allow the oxidation of secondary amines Initial screening showed that MAO-N-D5 enabled the selective oxidation of secondary amines in 8 and 9 carbon rings, as well as primary ethyl and propyl amines attached to secondary amines of indolines and pyrrolidines. Subsequently we developed a first kinetic model for the MAO-N-D5 enzyme based on the ping-pong bi-bi mechanism (similar to that for the human MAO-A enzyme). The full set of kinetic parameters were then established for three MAO-N-D5 substrates namely; 3-azabicyclo[3,3,0]octane, 1-(2 amino ethyl) pyrrolidine and 3-(2,3-dihydro-1H-indole-1-yl)propan-1-amine. The models for each amine substrate showed excellent agreement with experimentally determined progress curves over a range of operating conditions. They indicated that in each case amine inhibition was the main determinant of overall reaction rate rather than oxygen or imine (product) inhibition. From the perspective of larger scale bioconversion process design, the models indicated the need for fed-batch addition of the amine substrate and to increase the dissolved oxygen levels in order to maximize bioconversion process productivity

    Logarithmic periodicities in the bifurcations of type-I intermittent chaos

    Full text link
    The critical relations for statistical properties on saddle-node bifurcations are shown to display undulating fine structure, in addition to their known smooth dependence on the control parameter. A piecewise linear map with the type-I intermittency is studied and a log-periodic dependence is numerically obtained for the average time between laminar events, the Lyapunov exponent and attractor moments. The origin of the oscillations is built in the natural probabilistic measure of the map and can be traced back to the existence of logarithmically distributed discrete values of the control parameter giving Markov partition. Reinjection and noise effect dependences are discussed and indications are given on how the oscillations are potentially applicable to complement predictions made with the usual critical exponents, taken from data in critical phenomena.Comment: 4 pages, 6 figures, accepted for publication in PRL (2004

    Solvent-induced micelle formation in a hydrophobic interaction model

    Full text link
    We investigate the aggregation of amphiphilic molecules by adapting the two-state Muller-Lee-Graziano model for water, in which a solvent-induced hydrophobic interaction is included implicitly. We study the formation of various types of micelle as a function of the distribution of hydrophobic regions at the molecular surface. Successive substitution of non-polar surfaces by polar ones demonstrates the influence of hydrophobicity on the upper and lower critical solution temperatures. Aggregates of lipid molecules, described by a refinement of the model in which a hydrophobic tail of variable length interacts with different numbers of water molecules, are stabilized as the length of the tail increases. We demonstrate that the essential features of micelle formation are primarily solvent-induced, and are explained within a model which focuses only on the alteration of water structure in the vicinity of the hydrophobic surface regions of amphiphiles in solution.Comment: 11 pages, 10 figures; some rearrangement of introduction and discussion sections, streamlining of formalism and general compression; to appear in Phys. Rev.

    Transferring orbital and spin angular momenta of light to atoms

    Full text link
    Light beams carrying orbital angular momentum, such as Laguerre-Gaussian beams, give rise to the violation of the standard dipolar selection rules during the interaction with matter yielding, in general, an exchange of angular momentum larger than hbar per absorbed photon. By means of ab initio 3D numerical simulations, we investigate in detail the interaction of a hydrogen atom with intense Gaussian and Laguerre-Gaussian light pulses. We analyze the dependence of the angular momentum exchange with the polarization, the orbital angular momentum, and the carrier-envelope phase of light, as well as with the relative position between the atom and the light vortex. In addition, a quantum-trajectory approach based on the de Broglie-Bohm formulation of quantum mechanics is used to gain physical insight into the absorption of angular momentum by the hydrogen atom

    A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment

    Get PDF
    The UCNA collaboration is making a precision measurement of the β asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be ϵ(overbar) = 0.9985(4)

    Fractal Dimension and Localization of DNA Knots

    Get PDF
    The scaling properties of DNA knots of different complexities were studied by atomic force microscope. Following two different protocols DNA knots are adsorbed onto a mica surface in regimes of (i) strong binding, that induces a kinetic trapping of the three-dimensional (3D) configuration, and of (ii) weak binding, that permits (partial) relaxation on the surface. In (i) the gyration radius of the adsorbed DNA knot scales with the 3D Flory exponent ν0.58\nu\approx 0.58 within error. In (ii), we find ν0.66\nu\approx 0.66, a value between the 3D and 2D (ν=3/4\nu=3/4) exponents, indicating an incomplete 2D relaxation or a different polymer universality class. Compelling evidence is also presented for the localization of the knot crossings in 2D.Comment: 4 pages, 3 figure

    Universal 1/f Noise from Dissipative SOC Models

    Full text link
    We introduce a model able to reproduce the main features of 1/f noise: hyper-universality (the power-law exponents are independent on the dimension of the system; we show here results in d=1,2) and apparent lack of a low-frequency cutoff in the power spectrum. Essential ingredients of this model are an activation-deactivation process and dissipation.Comment: 3 Latex pages, 2 eps Figure

    Discretized Diffusion Processes

    Get PDF
    We study the properties of the ``Rigid Laplacian'' operator, that is we consider solutions of the Laplacian equation in the presence of fixed truncation errors. The dynamics of convergence to the correct analytical solution displays the presence of a metastable set of numerical solutions, whose presence can be related to granularity. We provide some scaling analysis in order to determine the value of the exponents characterizing the process. We believe that this prototype model is also suitable to provide an explanation of the widespread presence of power-law in social and economic system where information and decision diffuse, with errors and delay from agent to agent.Comment: 4 pages 5 figure, to be published in PR
    corecore