7,018 research outputs found
High throughput screening of monoamine oxidase (MAO-N-D5) substrate selectivity and rapid kinetic model generation
Full kinetic models provide insight into enzyme mechanism and kinetics and also support bioconversion process design and feasibility assessment. Previously we have established automated microwell methods for rapid data collection and hybrid kinetic modelling techniques for quantification of kinetic constants. In this work these methods are applied to explore the substrate selectivity and kinetics of monoamine oxidase, MAO-N-D5, from Aspergillus niger. In particular we examine the MAO-N-D5 variant Ile246Met/Asn336Ser/Met348Lys/Thr384Asn to allow the oxidation of secondary amines Initial screening showed that MAO-N-D5 enabled the selective oxidation of secondary amines in 8 and 9 carbon rings, as well as primary ethyl and propyl amines attached to secondary amines of indolines and pyrrolidines. Subsequently we developed a first kinetic model for the MAO-N-D5 enzyme based on the ping-pong bi-bi mechanism (similar to that for the human MAO-A enzyme). The full set of kinetic parameters were then established for three MAO-N-D5 substrates namely; 3-azabicyclo[3,3,0]octane, 1-(2 amino ethyl) pyrrolidine and 3-(2,3-dihydro-1H-indole-1-yl)propan-1-amine. The models for each amine substrate showed excellent agreement with experimentally determined progress curves over a range of operating conditions. They indicated that in each case amine inhibition was the main determinant of overall reaction rate rather than oxygen or imine (product) inhibition. From the perspective of larger scale bioconversion process design, the models indicated the need for fed-batch addition of the amine substrate and to increase the dissolved oxygen levels in order to maximize bioconversion process productivity
Logarithmic periodicities in the bifurcations of type-I intermittent chaos
The critical relations for statistical properties on saddle-node bifurcations
are shown to display undulating fine structure, in addition to their known
smooth dependence on the control parameter. A piecewise linear map with the
type-I intermittency is studied and a log-periodic dependence is numerically
obtained for the average time between laminar events, the Lyapunov exponent and
attractor moments. The origin of the oscillations is built in the natural
probabilistic measure of the map and can be traced back to the existence of
logarithmically distributed discrete values of the control parameter giving
Markov partition. Reinjection and noise effect dependences are discussed and
indications are given on how the oscillations are potentially applicable to
complement predictions made with the usual critical exponents, taken from data
in critical phenomena.Comment: 4 pages, 6 figures, accepted for publication in PRL (2004
Solvent-induced micelle formation in a hydrophobic interaction model
We investigate the aggregation of amphiphilic molecules by adapting the
two-state Muller-Lee-Graziano model for water, in which a solvent-induced
hydrophobic interaction is included implicitly. We study the formation of
various types of micelle as a function of the distribution of hydrophobic
regions at the molecular surface. Successive substitution of non-polar surfaces
by polar ones demonstrates the influence of hydrophobicity on the upper and
lower critical solution temperatures. Aggregates of lipid molecules, described
by a refinement of the model in which a hydrophobic tail of variable length
interacts with different numbers of water molecules, are stabilized as the
length of the tail increases. We demonstrate that the essential features of
micelle formation are primarily solvent-induced, and are explained within a
model which focuses only on the alteration of water structure in the vicinity
of the hydrophobic surface regions of amphiphiles in solution.Comment: 11 pages, 10 figures; some rearrangement of introduction and
discussion sections, streamlining of formalism and general compression; to
appear in Phys. Rev.
Transferring orbital and spin angular momenta of light to atoms
Light beams carrying orbital angular momentum, such as Laguerre-Gaussian
beams, give rise to the violation of the standard dipolar selection rules
during the interaction with matter yielding, in general, an exchange of angular
momentum larger than hbar per absorbed photon. By means of ab initio 3D
numerical simulations, we investigate in detail the interaction of a hydrogen
atom with intense Gaussian and Laguerre-Gaussian light pulses. We analyze the
dependence of the angular momentum exchange with the polarization, the orbital
angular momentum, and the carrier-envelope phase of light, as well as with the
relative position between the atom and the light vortex. In addition, a
quantum-trajectory approach based on the de Broglie-Bohm formulation of quantum
mechanics is used to gain physical insight into the absorption of angular
momentum by the hydrogen atom
A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment
The UCNA collaboration is making a precision measurement of the β asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be ϵ(overbar) = 0.9985(4)
Fractal Dimension and Localization of DNA Knots
The scaling properties of DNA knots of different complexities were studied by
atomic force microscope. Following two different protocols DNA knots are
adsorbed onto a mica surface in regimes of (i) strong binding, that induces a
kinetic trapping of the three-dimensional (3D) configuration, and of (ii) weak
binding, that permits (partial) relaxation on the surface. In (i) the gyration
radius of the adsorbed DNA knot scales with the 3D Flory exponent within error. In (ii), we find , a value between the 3D
and 2D () exponents, indicating an incomplete 2D relaxation or a
different polymer universality class. Compelling evidence is also presented for
the localization of the knot crossings in 2D.Comment: 4 pages, 3 figure
Universal 1/f Noise from Dissipative SOC Models
We introduce a model able to reproduce the main features of 1/f noise:
hyper-universality (the power-law exponents are independent on the dimension of
the system; we show here results in d=1,2) and apparent lack of a low-frequency
cutoff in the power spectrum. Essential ingredients of this model are an
activation-deactivation process and dissipation.Comment: 3 Latex pages, 2 eps Figure
Discretized Diffusion Processes
We study the properties of the ``Rigid Laplacian'' operator, that is we
consider solutions of the Laplacian equation in the presence of fixed
truncation errors. The dynamics of convergence to the correct analytical
solution displays the presence of a metastable set of numerical solutions,
whose presence can be related to granularity. We provide some scaling analysis
in order to determine the value of the exponents characterizing the process. We
believe that this prototype model is also suitable to provide an explanation of
the widespread presence of power-law in social and economic system where
information and decision diffuse, with errors and delay from agent to agent.Comment: 4 pages 5 figure, to be published in PR
- …