We investigate the aggregation of amphiphilic molecules by adapting the
two-state Muller-Lee-Graziano model for water, in which a solvent-induced
hydrophobic interaction is included implicitly. We study the formation of
various types of micelle as a function of the distribution of hydrophobic
regions at the molecular surface. Successive substitution of non-polar surfaces
by polar ones demonstrates the influence of hydrophobicity on the upper and
lower critical solution temperatures. Aggregates of lipid molecules, described
by a refinement of the model in which a hydrophobic tail of variable length
interacts with different numbers of water molecules, are stabilized as the
length of the tail increases. We demonstrate that the essential features of
micelle formation are primarily solvent-induced, and are explained within a
model which focuses only on the alteration of water structure in the vicinity
of the hydrophobic surface regions of amphiphiles in solution.Comment: 11 pages, 10 figures; some rearrangement of introduction and
discussion sections, streamlining of formalism and general compression; to
appear in Phys. Rev.