26 research outputs found

    Novel Sex Cells and Evidence for Sex Pheromones in Diatoms

    Get PDF
    BACKGROUND: Diatoms belong to the stramenopiles, one of the largest groups of eukaryotes, which are primarily characterized by a presence of an anterior flagellum with tubular mastigonemes and usually a second, smooth flagellum. Based on cell wall morphology, diatoms have historically been divided into centrics and pennates, of which only the former have flagella and only on the sperm. Molecular phylogenies show the pennates to have evolved from among the centrics. However, the timing of flagellum loss--whether before the evolution of the pennate lineage or after--is unknown, because sexual reproduction has been so little studied in the 'araphid' basal pennate lineages, to which Pseudostaurosira belongs. METHODS/PRINCIPAL FINDING: Sexual reproduction of an araphid pennate, Pseudostaurosira trainorii, was studied with light microscopy (including time lapse observations and immunofluorescence staining observed under confocal scanning laser microscopy) and SEM. We show that the species produces motile male gametes. Motility is mostly associated with the extrusion and retrieval of microtubule-based 'threads', which are structures hitherto unknown in stramenopiles, their number varying from one to three per cell. We also report experimental evidence for sex pheromones that reciprocally stimulate sexualization of compatible clones and orientate motility of the male gametes after an initial 'random walk'. CONCLUSIONS/SIGNIFICANCE: The threads superficially resemble flagella, in that both are produced by male gametes and contain microtubules. However, one striking difference is that threads cannot beat or undulate and have no motility of their own, and they do not bear mastigonemes. Threads are sticky and catch and draw objects, including eggs. The motility conferred by the threads is probably crucial for sexual reproduction of P. trainorii, because this diatom is non-motile in its vegetative stage but obligately outbreeding. Our pheromone experiments are the first studies in which gametogenesis has been induced in diatoms by cell-free exudates, opening new possibilities for molecular 'dissection' of sexualization

    Analysis of Expressed Sequence Tags from the Marine Microalga Pseudochattonella farcimen (Dictyochophyceae)

    Get PDF
    Pseudochattonella farcimen (Eikrem, Edvardsen, et Throndsen) is a unicellular alga belonging to the Dictyochophyceae (Heterokonta). It forms recurring blooms in Scandinavian coastal waters, and has been associated to fish mortality. Here we report the sequencing and analysis of 10,368 expressed sequence tags (ESTs) corresponding to 8,149 unique gene models from this species. Compared to EST libraries from other heterokonts, P. farcimen contains a high number of genes with functions related to cell communication and signaling. We found several genes encoding proteins related to fatty acid metabolism, including eight fatty acid desaturases and two phospholipase A2 genes. Three desaturases are highly similar to 4-desaturases from haptophytes. P. farcimen also possesses three putative polyketide synthases (PKSs), belonging to two different families. Some of these genes may have been acquired via horizontal gene transfer by a common ancestor of brown algae and dictyochophytes, together with genes involved in mannitol metabolism, which are also present in P. farcimen. Our findings may explain the unusual fatty acid profile previously observed in P. farcimen, and are discussed from an evolutionary perspective and in relation to the ichthyotoxicity of this alga

    Analysis of expressed sequence tags from the ichtyotoxic dictyochophyte Pseudochattonella farcimen

    No full text
    Pseudochattonella farcimen (Eikrem, Edvardsen, et Throndsen) is an ichthyotoxic alga within the Dictyochophyceae (Heterokonta), which has been shown to form blooms in Scandinavian waters every year since 1998. To improve our understanding of the biology of this alga and to facilitate future genomic studies, we report the sequencing and analysis of >10,000 expressed sequence tags (ESTs) corresponding to 8149 gene models from this species. A direct comparison with EST libraries from other heterokonts revealed several functional categories to be significantly overrepresented among the P. facimen ESTs, such as genes involved in cell communication, transporters, or genes targeted to cell organelles. Interestingly, P. farcimen ESTs also code for a high proportion (1.4%) of proteins related to fatty acid metabolism, including eight fatty acid desaturases and two phospholipase A2 genes. Three of the desaturases belong to a family of delta-4 desaturases, known so far only from haptophytes, where they catalyze the conversion of n3-docosapentaenoic (n3-DPA) acid to docosahexaenoic acid (DHA). These findings may partially explain the unusual fatty acid profiles observed in P. farcimen and are discussed both from an evolutionary point of view and in relation the ichthyotoxic effects of this alg

    Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana

    Get PDF
    Biotrophic eukaryotic plant pathogens require a living host for their growth and form an intimate haustorial interface with parasitized cells. Evolution to biotrophy occurred independently in fungal rusts and powdery mildews, and in oomycete white rusts and downy mildews. Biotroph evolution and molecular mechanisms of biotrophy are poorly understood. It has been proposed, but not shown, that obligate biotrophy results from (i) reduced selection for maintenance of biosynthetic pathways and (ii) gain of mechanisms to evade host recognition or suppress host defence. Here we use Illumina sequencing to define the genome, transcriptome, and gene models for the obligate biotroph oomycete and Arabidopsis parasite, Albugo laibachii. A. laibachii is a member of the Chromalveolata, which incorporates Heterokonts (containing the oomycetes), Apicomplexa (which includes human parasites like Plasmodium falciparum and Toxoplasma gondii), and four other taxa. From comparisons with other oomycete plant pathogens and other chromalveolates, we reveal independent loss of molybdenum-cofactor-requiring enzymes in downy mildews, white rusts, and the malaria parasite P. falciparum. Biotrophy also requires ‘‘effectors’’ to suppress host defence; we reveal RXLR and Crinkler effectors shared with other oomycetes, and also discover and verify a novel class of effectors, the ‘‘CHXCs’’, by showing effector delivery and effector functionality. Our findings suggest that evolution to progressively more intimate association between host and parasite results in reduced selection for retention of certain biosynthetic pathways, and particularly reduced selection for retention of molybdopterinrequiring biosynthetic pathways. These mechanisms are not only relevant to plant pathogenic oomycetes but also to human pathogens within the Chromalveolata
    corecore