5 research outputs found

    Is FGF13 a major contributor to genetic epilepsy with febrile seizures plus?

    No full text
    Mutation of fibroblast growth factor 13 (FGF13) has recently been implicated in genetic epilepsy with febrile seizures plus (GEFS+) in a single family segregating a balanced translocation with a breakpoint in this X chromosome gene, predicting a partial knockout involving 3 of 5 known FGF13 isoforms. Investigation of a mouse model of complete Fgf13 knock-out revealed increased susceptibility to hyperthermia-induced seizures and epilepsy. Here we investigated whether mutation of FGF13 would explain other cases of GEFS+ compatible with X-linked inheritance. We screened the coding and splice site regions of the FGF13 gene in a sample of 45 unrelated probands where GEFS+ segregated in an X-linked pattern. We subsequently identified a de novo FGF13 missense variant in an additional patient with febrile seizures and facial edema. Our data suggests FGF13 is not a common cause of GEFS+

    29 novembre 1916

    Get PDF
    29 novembre 1916 Mon cher Pierre, D'abord l'affaire de Jean [1]. J'ai pensé qu'en ces matières il valait mieux ne pas tarder et perdre du temps. J'ai fait remettre aujourd'hui une note à Pellé. Tu sais que le général est un ancien camarade de Stan. et que je suis en très bons termes avec lui. Je souhaite que son intervention serve à tranquilliser Paul et ta belle-sœur [2]. Je ne parle pas du Comité secret, tu as dû en apprendre aussi bien que moi toutes les circonstances. Si tu avais pu venir..

    A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction

    No full text
    MLKL is the essential effector of necroptosis, a form of programmed lytic cell death. We have isolated a mouse strain with a single missense mutation, Mlkl, that alters the two-helix ‘brace’ that connects the killer four-helix bundle and regulatory pseudokinase domains. This confers constitutive, RIPK3 independent killing activity to MLKL. Homozygous mutant mice develop lethal postnatal inflammation of the salivary glands and mediastinum. The normal embryonic development of Mlkl homozygotes until birth, and the absence of any overt phenotype in heterozygotes provides important in vivo precedent for the capacity of cells to clear activated MLKL. These observations offer an important insight into the potential disease-modulating roles of three common human MLKL polymorphisms that encode amino acid substitutions within or adjacent to the brace region. Compound heterozygosity of these variants is found at up to 12-fold the expected frequency in patients that suffer from a pediatric autoinflammatory disease, chronic recurrent multifocal osteomyelitis (CRMO)

    Stuttering associated with a pathogenic variant in the chaperone protein cyclophilin 40

    No full text
    Stuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or 'blocks'. Rare variants in a small number of genes encoding lysosomal pathway proteins have been linked to stuttering. We studied a large four-generation family in which persistent stuttering was inherited in an autosomal dominant manner with disruption of the cortico-basal-ganglia-thalamo-cortical network found on imaging. Exome sequencing of three affected family members revealed the PPID c.808C>T (p.Pro270Ser) variant that segregated with stuttering in the family. We generated a Ppid p.Pro270Ser knock-in mouse model and performed ex vivo imaging to assess for brain changes. Diffusion-weighted MRI in the mouse revealed significant microstructural changes in the left corticospinal tract, as previously implicated in stuttering. Quantitative susceptibility mapping also detected changes in cortico-striatal-thalamo-cortical loop tissue composition, consistent with findings in affected family members. This is the first report to implicate a chaperone protein in the pathogenesis of stuttering. The humanized Ppid murine model recapitulates network findings observed in affected family members

    A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction

    Get PDF
    Necroptosis is a regulated form of inflammatory cell death driven by activated MLKL. Here, the authors identify a mutation in the brace region that confers constitutive activation, leading to lethal inflammation in homozygous mutant mice and providing insight into human mutations in this region
    corecore