19 research outputs found

    Intramuscular DNA Vaccination of Juvenile Carp against Spring Viremia of Carp Virus Induces Full Protection and Establishes a Virus-Specific B and T Cell Response

    Get PDF
    Although spring viremia of carp virus (SVCV) can cause high mortalities in common carp, a commercial vaccine is not available for worldwide use. Here, we report a DNA vaccine based on the expression of the SVCV glycoprotein (G) which, when injected in the muscle even at a single low dose of 0.1 µg DNA/g of fish, confers up to 100% protection against a subsequent bath challenge with SVCV. Importantly, to best validate vaccine efficacy, we also optimized a reliable bath challenge model closely mimicking a natural infection, based on a prolonged exposure of carp to SVCV at 15°C. Using this optimized bath challenge, we showed a strong age-dependent susceptibility of carp to SVCV, with high susceptibility at young age (3 months) and a full resistance at 9 months. We visualized local expression of the G protein and associated early inflammatory response by immunohistochemistry and described changes in the gene expression of pro-inflammatory cytokines, chemokines, and antiviral genes in the muscle of vaccinated fish. Adaptive immune responses were investigated by analyzing neutralizing titers against SVCV in the serum of vaccinated fish and the in vitro proliferation capacity of peripheral SVCV-specific T cells. We show significantly higher serum neutralizing titers and the presence of SVCV-specific T cells in the blood of vaccinated fish, which proliferated upon stimulation with SVCV. Altogether, this is the first study reporting on a protective DNA vaccine against SVCV in carp and the first to provide a detailed characterization of local innate as well as systemic adaptive immune responses elicited upon DNA vaccination that suggest a role not only of B cells but also of T cells in the protection conferred by the SVCV-G DNA vaccine

    Technological developments and 3D imaging for the diagnosis of aquaculture fish diseases

    No full text
    Session 07. Challenges of fish nutrition for sustainable aquacultureInternational audienc

    EcoXtract® green solvent increases rainbow trout performances and decreases susceptibility to VHSV

    No full text
    Session 07. Challenges of fish nutrition for sustainable aquacultureInternational audienc

    Interplay between a bacterial pathogen and its host in rainbow trout isogenic lines with contrasted susceptibility to Cold Water Disease

    No full text
    International audienceInfectious diseases are a major constraint on aquaculture. Genetic lines with different susceptibilities to diseases are useful models to identify resistance mechanisms to pathogens and to improve prophylaxis. Bacterial cold-water disease (BCWD) caused by Flavobacterium psychrophilum represents a major threat for freshwater salmonid farming worldwide. A collection of rainbow trout (Oncorhynchus mykiss) isogenic lines was previously produced from a French domestic population. Here, we compared BCWD resistance phenotypes using a subset of isogenic lines chosen for their contrasted susceptibilities to F. psychrophilum. We applied individual monitoring to document the infection process, including time-course quantification of bacteremia and innate immune response. Strikingly, BCWD resistance was correlated with a lower bacterial growth rate in blood. Several immune genes were expressed at higher levels in resistant fish regardless of infection: the Type II arginase (arg2), a marker for M2 macrophages involved in anti-inflammatory responses and tissue repair, and two Toll-like receptors (tlr2/tlr7), responsible for pathogen detection and inflammatory responses. This study highlights the importance of innate and intrinsic defense mechanisms in determining the outcome of F. psychrophilum infections, and illustrates that non-lethal time-course blood sampling for individual monitoring of bacteremia is a powerful tool to resolve within-host pathogen behavior in bacterial fish diseases

    Investigation of the Genus Flavobacterium as a Reservoir for Fish-Pathogenic Bacterial Species: the Case of Flavobacterium collinsii

    No full text
    International audienceBacteria of the genus Flavobacterium are recovered from a large variety of environments. Among the described species, Flavobacterium psychrophilum and Flavobacterium columnare cause considerable losses in fish farms. Alongside these well-known fish-pathogenic species, isolates belonging to the same genus recovered from diseased or apparently healthy wild, feral, and farmed fish have been suspected to be pathogenic. Here, we report the identification and genomic characterization of a Flavobacterium collinsii isolate (TRV642) retrieved from rainbow trout spleen. A phylogenetic tree of the genus built by aligning the core genome of 195 Flavobacterium species revealed that F. collinsii stands within a cluster of species associated with diseased fish, the closest one being F. tructae, which was recently confirmed as pathogenic. We evaluated the pathogenicity of F. collinsii TRV642 as well as of Flavobacterium bernardetii F-372T, another recently described species reported as a possible emerging pathogen. Following intramuscular injection challenges in rainbow trout, no clinical signs or mortalities were observed with F. bernardetii. F. collinsii showed very low virulence but was isolated from the internal organs of survivors, indicating that the bacterium is able to survive inside the host and may provoke disease in fish under compromised conditions such as stress and/or wounds. Our results suggest that members of a phylogenetic cluster of fish-associated Flavobacterium species may be opportunistic fish pathogens causing disease under specific circumstances. IMPORTANCE Aquaculture has expanded significantly worldwide in the last decades and accounts for half of human fish consumption. However, infectious fish diseases are a major bottleneck for its sustainable development, and an increasing number of bacterial species from diseased fish raise a great concern. The current study revealed phylogenetic associations with ecological niches among the Flavobacterium species. We also focused on Flavobacterium collinsii, which belongs to a group of putative pathogenic species. The genome contents revealed a versatile metabolic repertoire suggesting the use of diverse nutrient sources, a characteristic of saprophytic or commensal bacteria. In a rainbow trout experimental challenge, the bacterium survived inside the host, likely escaping clearance by the immune system but without provoking massive mortality, suggesting opportunistic pathogenic behavior. This study highlights the importance of experimentally evaluating the pathogenicity of the numerous bacterial species retrieved from diseased fi

    Impact of selection for better utilization of 100 % plant-based diet on disease resistance in rainbow trout

    No full text
    Impact of selection for better utilization of 100 % plant-based diet on disease resistance in rainbow trout. Aquaculture Europe 201

    Two functionally distinct heme/iron transport systems are virulence determinants of the fish pathogen Flavobacterium psychrophilum

    No full text
    International audienceBacterial pathogens have a critical impact on aquaculture, a sector that accounts for half of the human fish consumption. Flavobacterium psychrophilum (phylum Bacteroidetes) is responsible for bacterial cold-water disease in salmonids worldwide. The molecular factors involved in host invasion, colonization and haemorrhagic septicaemia are mostly unknown. In this study, we identified two new TonB-dependent receptors, HfpR and BfpR, that are required for adaptation to iron conditions encountered during infection and for virulence in rainbow trout. Transcriptional analyses revealed that their expression is tightly controlled and upregulated under specific iron sources and concentrations. Characterization of deletion mutants showed that they act without redundancy: BfpR is required for optimal growth in the presence of high haemoglobin level, while HfpR confers the capacity to acquire nutrient iron from haem or haemoglobin under iron scarcity. The gene hfpY, co-transcribed with hfpR, encodes a protein related to the HmuY family. We demonstrated that HfpY binds haem and contributes significantly to host colonization and disease severity. Overall, these results are consistent with a model in which both BfpR and Hfp systems promote haem uptake and respond to distinct signals to adapt iron acquisition to the different stages of pathogenesis. Our findings give insight into the molecular basis of pathogenicity of a serious pathogen belonging to the understudied family Flavobacteriaceae and point to the newly identified haem receptors as promising targets for antibacterial development
    corecore