19,356 research outputs found
A Poincar\'e section for the general heavy rigid body
A general recipe is developed for the study of rigid body dynamics in terms
of Poincar\'e surfaces of section. A section condition is chosen which captures
every trajectory on a given energy surface. The possible topological types of
the corresponding surfaces of section are determined, and their 1:1 projection
to a conveniently defined torus is proposed for graphical rendering.Comment: 25 pages, 10 figure
Green's function theory of quasi-two-dimensional spin-half Heisenberg ferromagnets: stacked square versus stacked kagom\'e lattice
We consider the thermodynamic properties of the quasi-two-dimensional
spin-half Heisenberg ferromagnet on the stacked square and the stacked kagom\'e
lattices by using the spin-rotation-invariant Green's function method. We
calculate the critical temperature , the uniform static susceptibility
, the correlation lengths and the magnetization and
investigate the short-range order above . We find that and at
are smaller for the stacked kagom\'e lattice which we attribute to
frustration effects becoming relevant at finite temperatures.Comment: shortened version as published in PR
Frustrated spin ladder with alternating spin-1 and spin-1/2 rungs
We study the impact of the diagonal frustrating couplings on the quantum
phase diagram of a two-leg ladder composed of alternating spin-1 and spin-1/2
rungs. As the coupling strength is increased the system successively exhibits
two gapped paramagnetic phases (a rung-singlet and a Haldane-like
non-degenerate states) and two ferrimagnetic phases with different
ferromagnetic moments per rung. The first two states are similar to the phases
studied in the frustrated spin-1/2 ladder, whereas the magnetic phases appear
as a result of the mixed-spin structure of the model. A detailed
characterization of these phases is presented using density-matrix
renormalization-group calculations, exact diagonalizations of periodic
clusters, and an effective Hamiltonian approach inspired by the analysis of
numerical data. The present theoretical study was motivated by the recent
synthesis of the quasi-one-dimensional ferrimagnetic material
FeFe (trans-1,4-cyclohexanedicarboxylate) exhibiting a similar
ladder structure.Comment: 10 pages, 8 figure
Large Negative Electronic Compressibility of LaAlO3-SrTiO3 Interfaces with Ultrathin LaAlO3 Layers
A two-dimensional electron liquid is formed at the n-type interface between
SrTiO3 and LaAlO3. Here we report on Kelvin probe microscopy measurements of
the electronic compressibility of this electron system. The electronic
compressibility is found to be negative for carrier densities of
\approx10^13/cm^2. At even smaller densities, a metal-to-insulator transition
occurs. These local measurements corroborate earlier measurements of the
electronic compressibility of LaAlO3-SrTiO3 interfaces obtained by measuring
the capacitance of macroscopic metal-LaAlO3-SrTiO3 capacitors
Ehrenfest-time dependence of counting statistics for chaotic ballistic systems
Transport properties of open chaotic ballistic systems and their statistics
can be expressed in terms of the scattering matrix connecting incoming and
outgoing wavefunctions. Here we calculate the dependence of correlation
functions of arbitrarily many pairs of scattering matrices at different
energies on the Ehrenfest time using trajectory based semiclassical methods.
This enables us to verify the prediction from effective random matrix theory
that one part of the correlation function obtains an exponential damping
depending on the Ehrenfest time, while also allowing us to obtain the
additional contribution which arises from bands of always correlated
trajectories. The resulting Ehrenfest-time dependence, responsible e.g. for
secondary gaps in the density of states of Andreev billiards, can also be seen
to have strong effects on other transport quantities like the distribution of
delay times.Comment: Refereed version. 15 pages, 14 figure
Properties of the first excited state of 9Be derived from (gamma,n) and (e,e') reactions
Properties of the first excited state of the nucleus 9Be are discussed based
on recent (e,e') and (gamma,n) experiments. The parameters of an R-matrix
analysis of different data sets are consistent with a resonance rather than a
virtual state predicted by some model calculations. The energy and the width of
the resonance are deduced. Their values are rather similar for all data sets,
and the energy proves to be negative. It is argued that the disagreement
between the extracted B(E1) values may stem from different ways of integration
of the resonance. If corrected, fair agreement between the (e,e') and one of
the (gamma,n) data sets is found. A recent (gamma,n) experiment at the HIgS
facility exhibits larger cross sections close to the neutron threshold which
remain to be explained.Comment: 5 pages, accepted fro publication in Phys. Rev.
Excitation of the electric pygmy dipole resonance by inelastic electron scattering
To complete earlier studies of the properties of the electric pygmy dipole
resonance (PDR) obtained in various nuclear reactions, the excitation of the
1 states in Ce by scattering for momentum transfers
~fm is calculated within the plane-wave and distorted-wave
Born approximations. The excited states of the nucleus are described within the
Quasiparticle Random Phase Approximation (QRPA), but also within the
Quasiparticle-Phonon Model (QPM) by accounting for the coupling to complex
configurations. It is demonstrated that the excitation mechanism of the PDR
states in reactions is predominantly of transversal nature for
scattering angles . Being thus mediated by the
convection and spin nuclear currents, the like the
reaction, may provide additional information to the one obtained from Coulomb-
and hadronic excitations of the PDR in , , and
heavy-ion scattering reactions. The calculations predict that the
cross sections for the strongest individual PDR states are in general about
three orders of magnitude smaller as compared to the one of the lowest
state for the studied kinematics, but that they may become dominant at extreme
backward angles.Comment: Prepared for the special issue of EPJA on the topic "Giant, Pygmy,
Pairing Resonances and related topics" dedicated to the memory of Pier
Francesco Bortigno
Concentration of Vacancies at Metal Oxide Surfaces: Case Study of MgO (100)
We investigate effects of doping on formation energy and concentration of
oxygen vacancies at a metal oxide surface, using MgO (100) as an example. Our
approach employs density-functional theory, where the performance of the
exchange-correlation functional is carefully analyzed, and the functional is
chosen according to a fundamental condition on DFT ionization energies. The
approach is further validated by CCSD(T) calculations for embedded clusters. We
demonstrate that the concentration of oxygen vacancies at a doped oxide surface
is largely determined by formation of a macroscopically extended space charge
region
- …