1,259 research outputs found

    A review of metrology in lithium-ion electrode coating processes

    Get PDF
    Lithium-ion battery electrode design and manufacture is a multi-faceted process where the link between underlying physical processes and manufacturing outputs is not yet fully understood. This is in part due to the many parameters and variables involved and the lack of complete data sets under different processing conditions. The slurry coating step has significant implications for electrode design and advanced metrology offers opportunities to improve understanding and control at this stage. Here, metrology options for slurry coating are reviewed as well as opportunities for in-line integration, discussing the benefits of combining advanced metrology to provide comprehensive characterisation, improve understanding and feed into predictive design models. There is a comprehensive range of metrology which needs little improvement to provide the relevant quantifiable measures during coating, with one exception of particle sizing, where more precise, in-line measurement would be beneficial. However, there is a lack of studies that bring together the latest advancements in electrode coating metrology which is crucial to understanding the interdependency of myriad processing and product parameters. This review highlights the need for a comprehensive metrological picture whose value would be much greater than the sum of its parts for the next generation of multiphysics and data-driven models

    Design of slurries for 3D printing of sodium-ion battery electrodes

    Get PDF
    Additive manufacturing of battery electrodes, using syringe deposition 3D printing or direct ink writing methods, enables intricate microstructural design. This process differs from traditional blade or slot-die coating methods, necessitating tailored physical properties of composite slurries to ensure successful deposition. Inadequately optimised slurries result in non-uniform extrusion, and challenges such as nozzle swelling or slumping, result in compromised structural integrity of the print, limiting the resolution. This study focuses on developing slurry design principles by thoroughly characterising the rheology of several water-based hard carbon anode slurry, both in shear and extension. Hard carbon is chosen as a material of significant importance for future sodium-ion batteries, and an example for this optimisation. The slurry composition is tailored to introduce yield stress by incorporating network-forming binder (carrageenan) and additive (carbon nanotubes), effectively reducing spreading, and preserving the printed coating's structure. Validation is performed through printing a large width line and evaluating spread. The same slurry is deposited on a smaller 150 μm nozzle, which introduces die swell and spreading effects. This offers insights for further optimization strategies. The strategies developed in this research for characterizing and optimizing the rheology through formulation lay the groundwork for the advancement of detailed 3D printed electrodes, contributing to the progress of additive manufacturing technologies in the field of battery manufacturing.</p

    Dynamics of Warm-Absorbing Gas in Seyfert Galaxies: NGC 5548

    Get PDF
    A hydromagnetic (MHD) wind from a clumpy molecular accretion disk is invoked to explain observations of warm absorbing (WA) gas in UVX from Sy galaxies. This paper focuses on two issues: (1) compatibility of kinematics and dynamics of MHD wind with the observed properties of WAs; and (2) relationship between the UVX absorptions. We provide an in-depth comparison between the MHD model and the Sy 1 galaxy NGC 5548, which at high spectral resolution exhibits a number of discrete UV absorption components. We find that: (1) the total column densities of Ovii, Oviii and H, are reproduced by constraining the UV ion column densities of Civ and Nv in each component to lie within a factor of 2 of their observed values and optimizing over the possible sets of component ionization states and Civ column densities; (2) the WA exists in the outer part of the wind and is not a continuation of the flow in the BLR; and (3) the WA extends in radial and polar directions and is ionization-stratified. X-ray absorption is found to be heavily biased towards smaller r, and UV absorption originates at larger distances from the central continuum source. We show that the discrete absorption components along the line-of-sight are intrinsically clumpy. Density differences between kinematic components result in a range of ionization and recombination timescales. We further test the applicability of the MHD wind to WAs in general, by constructing a quasi-continuous flow model, and extending it to arbitrary aspect angles. We estimate the fraction of Sy 1s having detectable WAs with larger Ovii column density than Oviii, and the range of total H column densities. We also find that the ratio of Ovii to Oviii optical depths can serve as a new diagnostic of AGN aspect angle.Comment: Latex, 8 postscript figures. Astrophysical Journal, 536, June 10, in pres

    NASA Flight Planning Branch Space Shuttle Lessons Learned

    Get PDF
    Planning products and procedures that allowed the mission Flight Control Teams and the Astronaut crews to plan, train and fly every Space Shuttle mission were developed by the Flight Planning Branch at the NASA Johnson Space Center in Houston, Texas. As the Space Shuttle Program came to a close, lessons learned were collected from each phase of the successful execution of these Space Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines have been analyzed and will be discussed. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the Space Shuttle and ground team has also defined specific lessons used in improving the control team s effectiveness. Methodologies to communicate and transmit messages, images, and files from the Mission Control Center to the Orbiter evolved over several years. These lessons were vital in shaping the effectiveness of safe and successful mission planning and have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of Space Shuttle flight missions are not only documented in this paper, but are also discussed regarding how they pertain to changes in process and consideration for future space flight planning

    Galactic contamination in the QMAP experiment

    Get PDF
    We quantify the level of foreground contamination in the QMAP Cosmic Microwave Background (CMB) data with two objectives: (a) measuring the level to which the QMAP power spectrum measurements need to be corrected for foregrounds and (b) using this data set to further refine current foreground models. We cross-correlate the QMAP data with a variety of foreground templates. The 30 GHz Ka-band data is found to be significantly correlated with the Haslam 408 MHz and Reich and Reich 1420 MHz synchrotron maps, but not with the Diffuse Infrared Background Experiment (DIRBE) 240, 140 and 100 micron maps or the Wisconsin H-Alpha Mapper (WHAM) survey. The 40 GHz Q-band has no significant template correlations. We discuss the constraints that this places on synchrotron, free-free and dust emission. We also reanalyze the foreground-cleaned Ka-band data and find that the two band power measurements are lowered by 2.3% and 1.3%, respectively.Comment: 4 ApJL pages, including 4 figs. Color figures and data at http://www.hep.upenn.edu/~angelica/foreground.html#qmap or from [email protected]

    Tomography of X-ray Nova Muscae 1991: Evidence for ongoing mass transfer and stream-disc overflow

    Full text link
    We present a spectroscopic analysis of the black hole binary Nova Muscae 1991 in quiescence using data obtained in 2009 with MagE on the Magellan Clay telescope and in 2010 with IMACS on the Magellan Baade telescope at the Las Campanas Observatory. Emission from the disc is observed in H alpha, H beta and Ca II (8662 A). A prominent hotspot is observed in the Doppler maps of all three emission lines. The existence of this spot establishes ongoing mass transfer from the donor star in 2009-2010 and, given its absence in the 1993-1995 observations, demonstrates the presence of a variable hotspot in the system. We find the radial distance to the hotspot from the black hole to be consistent with the circularization radius. Our tomograms are suggestive of stream-disc overflow in the system. We also detect possible Ca II (8662 A) absorption from the donor star.Comment: 10 pages, 11 figures, 1 table. Accepted for publication in MNRA

    Brachial Artery Vasculitis and Associated Stenosis Presenting as Elbow Pain in a 16-Year-Old Soccer Player: A Case Report

    Get PDF
    Chronic vascular occlusion in the upper extremity can result from repetitive trauma, atherosclerosis, proximal embolic events, hypercoagulable states, and systemic diseases such as collagen vascular disease and vasculitis. Considerable functional impairment can result from these maladies; however, sometimes the condition develops slowly with minimal effect on the patient. We describe a 16-year-old soccer player with slow-progressing elbow pain and loss of range in motion caused by brachial artery vasculitis and resultant brachial arterial stenosis. Although vascular insults and lesions rarely cause chronic vascular occlusion, physicians should consider this possibility in patients with localized pain or atrophy, especially if the condition develops slowly

    Altered Resting-State Functional Connectivity of the Frontal-Striatal Reward System in Social Anxiety Disorder

    Get PDF
    We investigated differences in the intrinsic functional brain organization (functional connectivity) of the human reward system between healthy control participants and patients with social anxiety disorder. Functional connectivity was measured in the resting-state via functional magnetic resonance imaging (fMRI). 53 patients with social anxiety disorder and 33 healthy control participants underwent a 6-minute resting-state fMRI scan. Functional connectivity of the reward system was analyzed by calculating whole-brain temporal correlations with a bilateral nucleus accumbens seed and a ventromedial prefrontal cortex seed. Patients with social anxiety disorder, relative to the control group, had (1) decreased functional connectivity between the nucleus accumbens seed and other regions associated with reward, including ventromedial prefrontal cortex; (2) decreased functional connectivity between the ventromedial prefrontal cortex seed and lateral prefrontal regions, including the anterior and dorsolateral prefrontal cortices; and (3) increased functional connectivity between both the nucleus accumbens seed and the ventromedial prefrontal cortex seed with more posterior brain regions, including anterior cingulate cortex. Social anxiety disorder appears to be associated with widespread differences in the functional connectivity of the reward system, including markedly decreased functional connectivity between reward regions and between reward regions and lateral prefrontal cortices, and markedly increased functional connectivity between reward regions and posterior brain regions.Massachusetts Institute of Technology (Janet and Sheldon Razin Fellowship

    Optical spectroscopy and photometry of SAX J1808.4−3658 in outburst

    Get PDF
    We present phase resolved optical spectroscopy and photometry of V4580 Sagittarii, the optical counterpart to the accretion powered millisecond pulsar SAX J1808.4−3658, obtained during the 2008 September/October outburst. Doppler tomography of the N iiiΛ4640.64 Bowen blend emission line reveals a focused spot of emission at a location consistent with the secondary star. The velocity of this emission occurs at 324 ± 15 km s −1 ; applying a ‘ K -correction’, we find the velocity of the secondary star projected on to the line of sight to be 370 ± 40 km s −1 . Based on existing pulse timing measurements, this constrains the mass ratio of the system to be 0.044 +0.005 −0.004 , and the mass function for the pulsar to be 0.44 +0.16 −0.13  M ⊙ . Combining this mass function with various inclination estimates from other authors, we find no evidence to suggest that the neutron star in SAX J1808.4−3658 is more massive than the canonical value of 1.4 M ⊙ . Our optical light curves exhibit a possible superhump modulation, expected for a system with such a low mass ratio. The equivalent width of the Ca ii H and K interstellar absorption lines suggest that the distance to the source is ∼2.5 kpc. This is consistent with previous distance estimates based on type-I X-ray bursts which assume cosmic abundances of hydrogen, but lower than more recent estimates which assume helium-rich bursts.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74893/1/j.1365-2966.2009.14562.x.pd
    • …
    corecore