16 research outputs found

    Comparison of whole genome expression profile between preterm and full-term newborns

    Get PDF
    Objectives: Evaluate the time dependent expression of genes in preterm neonates and verify the influence of ontogenic maturation and the environmental factors on the gene expression after birth. Material and methods: The study was carried out on 20 full-term newborns and 62 preterm newborns (mean birth weight = 1002 [g] (SD: 247), mean gestational age = 27.2 weeks (SD: 1.9)). Blood samples were drawn from all the study participants at birth and at the 36th week postmenstrual age from the preterm group to assess whole genome expression in umbilical cord blood and in peripheral blood leukocytes, respectively. (SurePrint G3 Human Gene Expression v3, 8x60K Microarrays (Agilent)). Results: A substantial number of genes was found to be expressed differentially at the time of birth and at 36 PMA in comparison to the term babies with more genes being down-regulated than up-regulated. However, the fold change in the majority of cases was < 2.0. Extremely preterm and very preterm infants were characterized by significantly down-regulated cytokine and chemokine related pathways. The number of down-regulated genes decreased and number of up-regulated genes increased at 36 PMA vs. cord blood. There were no specific gene expression pathway profiles found within the groups of different gestational ages. Conclusions: Preterm delivery is associated with a different gene expression profile in comparison to term delivery. The gene expression profile changes with the maturity of a newborn measured by the gestational age

    Comparative two time-point proteome analysis of the plasma from preterm infants with and without bronchopulmonary dysplasia

    Get PDF
    Background: In this study, we aimed to analyze differences in plasma protein abundances between infants with and without bronchopulmonary dysplasia (BPD), to add new insights into a better understanding of the pathogenesis of this disease. Methods: Cord and peripheral blood of neonates (≤ 30 weeks gestational age) was drawn at birth and at the 36th postmenstrual week (36 PMA), respectively. Blood samples were retrospectively subdivided into BPD(+) and BPD(−) groups, according to the development of BPD. Results: Children with BPD were characterized by decreased afamin, gelsolin and carboxypeptidase N subunit 2 levels in cord blood, and decreased galectin-3 binding protein and hemoglobin subunit gamma-1 levels, as well as an increased serotransferrin abundance in plasma at the 36 PMA. Conclusions: BPD development is associated with the plasma proteome changes in preterm infants, adding further evidence for the possible involvement of disturbances in vitamin E availability and impaired immunological processes in the progression of prematurity pulmonary complications. Moreover, it also points to the differences in proteins related to infection resistance and maintaining an adequate level of hematocrit in infants diagnosed with BPD

    Pulmonary vascular disease is evident in gene regulation of experimental bronchopulmonary dysplasia

    No full text
    Objective: To examine the gene expression regarding pulmonary vascular disease in experimental bronchopulmonary dysplasia in young mice. Premature delivery puts babies at risk of severe complications. Bronchopulmonary dysplasia (BPD) is a common complication of premature birth leading to lifelong affection of pulmonary function. BPD is recognized as a disease of arrested alveolar development. The disease process is not fully described and no complete cure or prevention is known. The focus of interest in the search for treatment and prevention of BPD has traditionally been at airspace level; however, the pulmonary vasculature is increasingly acknowledged in the pathology of BPD. The aim of the investigation was to study the gene expression in lungs with BPD with regards to pulmonary vascular disease (PVD). Methods: We employed a murine model of hyperoxia-induced BPD and gene expression microarray technique to determine the mRNA expression in lung tissue from young mice. We combined gene expression pathway analysis and analyzed the biological function of multiple single gene transcripts from lung homogenate to study the PVD relevant gene expression. Results: There were n = 117 significantly differentially regulated genes related to PVD through down-regulation of contractile elements, up- and down-regulation of factors involved in vascular tone and tissue-specific genes. Several genes also allowed for pinpointing gene expression differences to the pulmonary vasculature. The gene Nppa coding for a natriuretic peptide, a potent vasodilator, was significantly down-regulated and there was a significant up-regulation of Pde1a (phosphodiesterase 1A), Ptger3 (prostaglandin e receptor 3), and Ptgs1 (prostaglandin-endoperoxide synthase one). Conclusion: The pulmonary vasculature is affected by the arrest of secondary alveolarization as seen by differentially regulated genes involved in vascular tone and pulmonary vasculature suggesting BPD is not purely an airspace disease. Clues to prevention and treatment may lie in the pulmonary vascular system

    Immune System Regulation Affected by a Murine Experimental Model of Bronchopulmonary Dysplasia: Genomic and Epigenetic Findings

    No full text
    Background: Bronchopulmonary dysplasia (BPD) is a common cause of abrupted lung development after preterm birth. BPD may lead to increased rehospitalization, more severe and frequent respiratory infections, and life-long reduced lung function. The gene regulation in lungs with BPD is complex, with various genetic and epigenetic factors involved. Objectives: The aim of this study was to examine the regulatory relation between gene expression and the epigenome (DNA methylation) relevant for the immune system after hyperoxia followed by a recovery period in air using a mouse model of BPD. Methods: Newborn mice pups were subjected to an immediate hyperoxic condition from birth and kept at 85% O2 levels for 14 days followed by a 14-day period in room air. Next, mice lung tissue was used for RNA and DNA extraction with subsequent microarray-based assessment of lung transcriptome and supplementary methylome analysis. Results:The immune system-related transcriptomeregulation was affected in mouse lungs after hyperoxia. A high proportion of genes relevant in the immune system exhibited significant expression alterations, e.g., B cell-specific genes central to the cytokine-cytokine receptor interaction, the PI3K-AKT, and the B cell receptor signaling pathways. The findings were accompanied by significant DNA hypermethylation observed in the PI3K-AKT pathway and immune system-relevant genes. Conclusions: Oxygen damage could be partly responsible for the increased susceptibility and abnormal response to respiratory viruses and infections seen in premature babies with BPD through dysregulated genes
    corecore