25 research outputs found

    Cooperative Communications: Network Design and Incremental Relaying

    Get PDF

    Outage Capacity of Bursty Amplify-and-Forward with Incremental Relaying

    Full text link
    We derive the outage capacity of a bursty version of the amplify-and-forward (BAF) protocol for small signal-to-noise ratios when incremental relaying is used. We show that the ratio between the outage capacities of BAF and the cut-set bound is independent of the relay position and that BAF is outage optimal for certain conditions on the target rate R. This is in contrast to decode-and-forward with incremental relaying, where the relay location strongly determines the performance of the cooperative protocol. We further derive the outage capacity for a network consisting of an arbitrary number of relay nodes. In this case the relays transmit in subsequent partitions of the overall transmission block and the destination accumulates signal-to-noise ratio until it is able to decode.Comment: 5 pages, 3 figures, submitted to IEEE International Symposium on Information Theory, Austin, TX, June 13-18, 201

    Outage Capacity of Incremental Relaying at Low Signal-to-Noise Ratios

    Full text link
    We present the \epsilon-outage capacity of incremental relaying at low signal-to-noise ratios (SNR) in a wireless cooperative network with slow Rayleigh fading channels. The relay performs decode-and-forward and repetition coding is employed in the network, which is optimal in the low SNR regime. We derive an expression on the optimal relay location that maximizes the \epsilon-outage capacity. It is shown that this location is independent of the outage probability and SNR but only depends on the channel conditions represented by a path-loss factor. We compare our results to the \epsilon-outage capacity of the cut-set bound and demonstrate that the ratio between the \epsilon-outage capacity of incremental relaying and the cut-set bound lies within 1/\sqrt{2} and 1. Furthermore, we derive lower bounds on the \epsilon-outage capacity for the case of K relays.Comment: 5 pages, 4 figures, to be presented at VTC Fall 2009 in Anchorage, Alask

    Comparing the Outage Capacity of Transmit Diversity and Incremental Relaying

    Get PDF
    We present the e-outage capacity of incremental relaying at low signal-to-noise ratios (SNR) in a wireless cooperative network with slow Rayleigh fading channels. The relay performs decode-and-forward and repetition coding is employed in the network, which is optimal in the low SNR regime. We derive an expression on the optimal relay location that maximizes the e-outage capacity. It is shown that this location is independent of the outage probability and SNR but only depends on the channel conditions represented by a path-loss factor. We compare our results to the e-outage capacity of the cut-set bound and demonstrate that the ratio between the e-outage capacity of incremental relaying and the cut-set bound lies within 1/wurzel2 and 1. Furthermore, we derive lower bounds on the e-outage capacity for the case of K relays

    A Novel Combining Receiver for a Dual-Diversity Wireless Relay Network

    Get PDF
    We present a simple combining receiver for a dual-diversity wireless relay network. The main concern of the paper is to face the trade-off between performance and complexity. The receiver focuses on signal-to-noise ratio (SNR) monitoring and selects dynamically between selection combining (SC) and equal gain combining (EGC) depending on the SNR ratio of the two received branches. It is shown that SC suffers no SNR degradation compared to a single branch communications system if the two receive branches are unbalanced, wheres EGC suffers a loss of 3 dB. Error performance with respect to branch unbalance is considered as well and limiting values for a high degree of branch unbalance are derived
    corecore