756 research outputs found

    Modeling of photosynthetic light-harvesting: From structure to function

    Get PDF
    AbstractIn order to bridge the gap between the crystal structure of photosynthetic pigment-protein complexes and the data gathered in optical experiments, two essential problems need to be solved. On one hand, theories of optical spectra and excitation energy transfer have to be developed that take into account the pigment-pigment (excitonic) and the pigment-protein (exciton-vibrational) coupling on an equal footing. On the other hand, the parameters entering these theories need to be calculated from the structural data. Good agreement between simulations and experimental data then allows to draw conclusions on structure-function relationships of these complexes and to make predictions. In the development of theory, a delicate question is how to describe the interplay between the quantum dynamics of excitons and the dephasing of coherences by the coupling of excitons to protein vibrations. Quantum mechanic coherences are utilized for efficient light harvesting. In the reaction centers of purple bacteria an energy sink is created by a coherent coupling of exciton states to intermolecular charge transfer states. The dephasing of coherences can be monitored, e.g., by the temperature dependent shift of optical lines. In the Fenna-Matthews-Olson protein, which acts as an excitation energy wire between the outer chlorosome antenna and the reaction center complex, an energy funnel for efficient light-harvesting is formed by the pigment-protein coupling. The protein shifts the local transition energies of the pigments, the so-called site energies in a specific way, such that pigments facing the reaction center are redshifted with respect to those on the chlorosome side. In the light-harvesting complex of higher plants an excitation energy funnel is created by the use of two different types of chlorophyll (Chl) pigments, Chla and Chlb and by the pigment-protein coupling that creates an energy sink at Chla 610 located in the stromal layer at the periphery of the complex. The close contact between Chla and Chlb gives rise to ultrafast subpicosecond exciton transfer, whereas dynamic localization effects are inferred to lead to long ps relaxation times between the majority of Chla pigments

    Laser Control of Dissipative Two-Exciton Dynamics in Molecular Aggregates

    Full text link
    There are two types of two-photon transitions in molecular aggregates, that is, non-local excitations of two monomers and local double excitations to some higher excited intra-monomer electronic state. As a consequence of the inter-monomer Coulomb interaction these different excitation states are coupled to each other. Higher excited intra-monomer states are rather short-lived due to efficient internal conversion of electronic into vibrational energy. Combining both processes leads to the annihilation of an electronic excitation state, which is a major loss channel for establishing high excitation densities in molecular aggregates. Applying theoretical pulse optimization techniques to a Frenkel exciton model it is shown that the dynamics of two-exciton states in linear aggregates (dimer to tetramer) can be influenced by ultrafast shaped laser pulses. In particular, it is studied to what extent the decay of the two-exciton population by inter-band transitions can be transiently suppressed. Intra-band dynamics is described by a dissipative hierarchy equation approach, which takes into account strong exciton-vibrational coupling in the non-Markovian regime.Comment: revised version, fig. 8 ne

    Polymers in Curved Boxes

    Full text link
    We apply results derived in other contexts for the spectrum of the Laplace operator in curved geometries to the study of an ideal polymer chain confined to a spherical annulus in arbitrary space dimension D and conclude that the free energy compared to its value for an uncurved box of the same thickness and volume, is lower when D<3D < 3, stays the same when D=3D = 3, and is higher when \mbox{D>3D > 3}. Thus confining an ideal polymer chain to a cylindrical shell, lowers the effective bending elasticity of the walls, and might induce spontaneous symmetry breaking, i.e. bending. (Actually, the above mentioned results show that {\em {any}} shell in D=3D = 3 induces this effect, except for a spherical shell). We compute the contribution of this effect to the bending rigidities in the Helfrich free energy expression.Comment: 20 pages RevTeX, epsf; 4 figures; submitted to Macromoledule

    Spectrum of the Schr\"odinger operator in a perturbed periodically twisted tube

    Full text link
    We study Dirichlet Laplacian in a screw-shaped region, i.e. a straight twisted tube of a non-circular cross section. It is shown that a local perturbation which consists of "slowing down" the twisting in the mean gives rise to a non-empty discrete spectrum.Comment: LaTeX2e, 10 page

    A Hardy inequality in twisted waveguides

    Full text link
    We show that twisting of an infinite straight three-dimensional tube with non-circular cross-section gives rise to a Hardy-type inequality for the associated Dirichlet Laplacian. As an application we prove certain stability of the spectrum of the Dirichlet Laplacian in locally and mildly bent tubes. Namely, it is known that any local bending, no matter how small, generates eigenvalues below the essential spectrum of the Laplacian in the tubes with arbitrary cross-sections rotated along a reference curve in an appropriate way. In the present paper we show that for any other rotation some critical strength of the bending is needed in order to induce a non-empty discrete spectrum.Comment: LaTeX, 20 page

    Suppression of quantum oscillations and the dependence on site energies in electronic excitation transfer in the Fenna-Matthews-Olson trimer

    Full text link
    Energy transfer in the photosynthetic complex of the Green Sulfur Bacteria known as the Fenna-Matthews-Olson (FMO) complex is studied theoretically taking all three subunits (monomers) of the FMO trimer and the recently found eighth bacteriochlorophyll (BChl) molecule into account. We find that in all considered cases there is very little transfer between the monomers. Since it is believed that the eighth BChl is located near the main light harvesting antenna we look at the differences in transfer between the situation when BChl 8 is initially excited and the usually considered case when BChl 1 or 6 is initially excited. We find strong differences in the transfer dynamics, both qualitatively and quantitatively. When the excited state dynamics is initialized at site eight of the FMO complex, we see a slow exponential-like decay of the excitation. This is in contrast to the oscillations and a relatively fast transfer that occurs when only seven sites or initialization at sites 1 and 6 is considered. Additionally we show that differences in the values of the electronic transition energies found in the literature lead to a large difference in the transfer dynamics

    Node counting in wireless ad-hoc networks

    Get PDF
    We study wireless ad-hoc networks consisting of small microprocessors with limited memory, where the wireless communication between the processors can be highly unreliable. For this setting, we propose a number of algorithms to estimate the number of nodes in the network, and the number of direct neighbors of each node. The algorithms are simulated, allowing comparison of their performance

    Electronic Coherence Dephasing in Excitonic Molecular Complexes: Role of Markov and Secular Approximations

    Full text link
    We compare four different types of equations of motion for reduced density matrix of a system of molecular excitons interacting with thermodynamic bath. All four equations are of second order in the linear system-bath interaction Hamiltonian, with different approximations applied in their derivation. In particular we compare time-nonlocal equations obtained from so-called Nakajima-Zwanzig identity and the time-local equations resulting from the partial ordering prescription of the cummulant expansion. In each of these equations we alternatively apply secular approximation to decouple population and coherence dynamics from each other. We focus on the dynamics of intraband electronic coherences of the excitonic system which can be traced by coherent two-dimensional spectroscopy. We discuss the applicability of the four relaxation theories to simulations of population and coherence dynamics, and identify features of the two-dimensional coherent spectrum that allow us to distinguish time-nonlocal effects.Comment: 14 pages, 8 figure

    Challenges facing an understanding of the nature of low-energy excited states in photosynthesis

    Full text link
    © 2016 Elsevier B.V. While the majority of the photochemical states and pathways related to the biological capture of solar energy are now well understood and provide paradigms for artificial device design, additional low-energy states have been discovered in many systems with obscure origins and significance. However, as low-energy states are naively expected to be critical to function, these observations pose important challenges. A review of known properties of low energy states covering eight photochemical systems, and options for their interpretation, are presented. A concerted experimental and theoretical research strategy is suggested and outlined, this being aimed at providing a fully comprehensive understanding
    corecore