18 research outputs found
Inherited basement structures and their influence in foreland evolution: A case study in Central Patagonia, Argentina
Continental crust exhibits areas of recurrent deformation and reactivation of faults that can be persistent for hundreds of millions of years. Associated with weak lithospheric zones, the characterization of long-lived deformational zones and inherited structures are critical aspects in the construction of orogens and rift systems, playing a major role in magmatism and basin evolution. Central Patagonia, which is situated in the Andean foreland of southern South America, presents a complex and multi-episodic tectonic history related to intraplate deformation at a significant distance from the Andean trench. Its ∼NW-SE structural trend, which is anomalously oblique to the Andean orogen, has been proposed as an inherited crustal anisotropy that controlled Mesozoic basins and Cenozoic volcano-sedimentary foreland basins development. However, a systematic regional study focused on the basement structural anisotropy has not been undertaken so far. In this contribution, we use aeromagnetic and gravimetric datasets that are integrated with field geological and structural data to address this issue. We define a series of ∼NW-SE regional structures which governed the present-day basement-block architecture of the foreland and exerted an important control in the deposition of Mesozoic-Cenozoic sedimentary and volcanic sequences. The tectonic significance of these structures and their paleogeographic implications in the context of the Late Paleozoic Gondwanide magmatic arc are also discussed.Fil: Renda, Emiliano Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Alvarez, Dolores. Secretaría de Industria y Minería. Servicio Geológico Minero Argentino; ArgentinaFil: Prezzi, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Oriolo, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Vizan, Haroldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentin
Slab pull in the northern margin of Paleothetys ocean and internal deformation in Gondwana (including Ventana fold belt)
Durante el Paleozoico tardío tuvieron lugar varios procesos tectónicos en el interior de Pangea que generaron estructuras reconocidas en diferentes lugares de nuestro planeta. Con el objetivo de relacionar estos procesos con factores geodinámicos, se realizaron reconstrucciones paleogeográficas absolutas de Gondwana utilizando datos paleomagnéticos para dos lapsos: 1) Pensilvaniano (Carbonífero tardío)-Guadalupiano (Pérmico medio) y 2) Lopingiano (Pérmico tardío)-Triásico medio. Para lograr un mejor ajuste de los polos paleomagnéticos de Gondwana se consideraron distintos dominios litosféricos separados por fajas deformadas localizadas a lo largo de arcos de circunferencia. A través de las reconstrucciones se obtuvieron vectores de desplazamiento que indicarían un movimiento SO-NE de diferentes dominios de Gondwana. Desde el punto de vista geodinámico, durante el Paleozoico tardío, el manto terrestre habría presentado una gran zona de sumidero en el hemisferio en el que se habría ensamblado Pangea a través de la unión de Gondwana con Laurasia. Así se habría cerrado el océano Reico y habría permanecido activa una zona de subducción en el margen boreal del océano Paleotetis. La tracción de losa en este margen habría generado diferentes procesos tectónicos. En Gondwana Occidental, la tracción de losa mencionada, habría provocado rotaciones antihorarias diferenciales de distintos dominios litosféricos a través de megazonas de fallas transcurrentes. Este proceso habría inducido flujos toroidales en el manto, cuyos vórtices se habrían ubicado en los centros de los arcos a lo largo de los cuales se habrían canalizado los desplazamientos laterales entre los dominios. Estos movimientos, junto con un rápido desplazamiento sur-norte de Pangea, habrían tenido vital importancia en la deformación de distintas localidades para las que se han sugerido direcciones de esfuerzos SO-NE coherentes con las orientaciones de los vectores de desplazamiento calculados. Entre estas localidades se encontraría el Cordón Plegado de Ventana.During the late Paleozoic several tectonic processes took place within Pangea generating structures known in different parts of our planet. In order to relate these processes to geodynamic causes, absolute paleoreconstructions of Gondwana were performed, using paleomagnetic data, for two time spans: 1) Pennsylvanian (Late Carboniferous)-Guadalupian (Middle Permian) and 2) Lopingian (Late Permian)-Middle Triassic. To achieve a better fit of Gondwana paleopoles different lithospheric domains separated by deformed belts located along circumference arcs were considered. Through the reconstructions, displacement vectors that indicate a SW-NE movement of different Gondwana domains were determined. During the Late Paleozoic, the mantle would have presented a large downwelling area in the hemisphere where Pangea was assembled through the union of Gondwana with Laurasia. Thus, the Rheic ocean would have closed and an active subduction zone would have remained active in the northern margin of the Paleothetys ocean. The slab pull in this margin would have generated different tectonic processes. In Western Gondwana, the mentioned slab pull would have caused counterclockwise rotations of different lithospheric domains through strike-slip mega-fault zones. This process would have induced toroidal flows in the mantle, whose vortices would have been located at the centers of the arcs along which the lateral displacements between the domains would have been channelized. These movements, coupled with a fast south-north displacement of Pangea, would have had vital importance in the deformation of different localities for which SW-NE directions of stress coherent with the orientation of the calculated displacement vectors have been suggested. The Ventana fold belt would be one of these localities.Fil: Vizan, Haroldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Basicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Basicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Prezzi, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Basicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Basicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Japas, Maria Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Basicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Basicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Van Zele, Maria Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Basicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Basicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Geuna, Silvana Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Basicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Basicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Renda, Emiliano Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Basicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Basicas, Aplicadas y Ambientales de Buenos Aires; Argentin
The Late Paleozoic Tectonometamorphic Evolution of Patagonia Revisited: Insights From the Pressure-Temperature-Deformation-Time (P-T-D-t) Path of the Gondwanide Basement of the North Patagonian Cordillera (Argentina)
Combined field structural analysis with in situ electron probe microanalysis Th-U-Pb monazite dating, petrologic, and microstructural data provides a reconstruction of the pressure-temperature-deformation-time (P-T-D-t) path of the Gondwanide basement of the North Patagonian Cordillera. For samples from the Challhuaco hill, the timing of development of the metamorphic S2 foliation and associated L2 lineation and tight to isoclinal F2 folds is constrained by monazite ages of 299 ± 8 and 302 ± 16 Ma during peak metamorphic conditions of ~ 650 °C and 11 kbar, achieved during prograde metamorphism and progressive deformation. Metamorphism and deformation of metamorphic complexes of the North Patagonian Andes seem to record Late Paleozoic crustal thickening and are coeval with metamorphism of accretionary complexes exposed further west in Chile, suggesting a coupled Late Devonian-Carboniferous evolution. Instead of the result of continental collision, the Gondwanide orogeny might thus be essentially linked to transpression due to advancing subduction along the proto-Pacific margin of Gondwana. On the other hand, second generation of monazite ages of 171 ± 9 and 170 ± 7 Ma constrains the timing of low-grade metamorphism related to kink band and F3 open fold development during Jurassic transtension and emplacement of granitoids. Finally, a Cretaceous overprint, likely resulting from hydrothermal processes, is recorded by monazite ages of 110 ± 10 and 80 ± 20 Ma, which might be coeval with deformation along low-grade shear zones during the onset of Andean transpression.Fil: Oriolo, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Schulz, Bernhard. Technical University Bergakademie Freiberg; AlemaniaFil: Gonzalez, Pablo Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; ArgentinaFil: Bechis, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Diversidad Cultural y Procesos de Cambio. Universidad Nacional de Río Negro. Instituto de Investigaciones en Diversidad Cultural y Procesos de Cambio; ArgentinaFil: Olaizola, Ezequiel Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Diversidad Cultural y Procesos de Cambio. Universidad Nacional de Río Negro. Instituto de Investigaciones en Diversidad Cultural y Procesos de Cambio; ArgentinaFil: Krause, Joachim. Helmholtz Institut Freiberg für Ressourcentechnologie. Helmholtz‐Zentrum Dresden‐Rossendorf; AlemaniaFil: Renda, Emiliano Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Vizan, Haroldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentin
Paleotethys slab pull, self-lubricated weak lithospheric zones, poloidal and toroidal plate motions, and Gondwana tectonics
The Gondwana megacontinent was composed of different domains separated by self-lubricated weak lithospheric zones, two of which could have extended into Laurasia. Displacement vectors determined through three consecutive paleomagnetism-constrained paleogeographic reconstructions (Early Pennsylvanian-early Guadalupian, ca. 320-270 Ma; late Guadalupian-Middle Triassic, ca. 260-240 Ma; and Late Triassic-early Late Jurassic, ca. 230-160 Ma) show similar orientations to coeval tectonic stresses along Gondwana. Triggered by slab pull at the northern subduction margin of the Paleotethys Ocean, differential displacements between the Gondwana domains caused localized deformation along their borders, reactivating old weak lithospheric zones (e.g., Ventana fold belt south of Buenos Aries province, Argentina; basins such as Cuvette in central Africa; and Neuquén on the Pacific margin of Gondwana). We propose that the wide extent of these structures was possible due to the transmission of mantle toroidal flow induced by strike-slip movements along these focused self-lubricated weak lithospheric zones, along with the northward drift of Pangea. These processes occurred simultaneously with a major mantle reorganization from a huge cold downwelling to a hot upwelling event caused by thermal energy storage beneath Pangea.Centro de Investigaciones Geológica
Paleotethys slab pull, self-lubricated weak lithospheric zones, poloidal and toroidal plate motions, and Gondwana tectonics
The Gondwana megacontinent was composed of different domains separated by self-lubricated weak lithospheric zones, two of which could have extended into Laurasia. Displacement vectors determined through three consecutive paleomagnetism-constrained paleogeographic reconstructions (Early Pennsylvanian-early Guadalupian, ca. 320-270 Ma; late Guadalupian-Middle Triassic, ca. 260-240 Ma; and Late Triassic-early Late Jurassic, ca. 230-160 Ma) show similar orientations to coeval tectonic stresses along Gondwana. Triggered by slab pull at the northern subduction margin of the Paleotethys Ocean, differential displacements between the Gondwana domains caused localized deformation along their borders, reactivating old weak lithospheric zones (e.g., Ventana fold belt south of Buenos Aries province, Argentina; basins such as Cuvette in central Africa; and Neuquén on the Pacific margin of Gondwana). We propose that the wide extent of these structures was possible due to the transmission of mantle toroidal flow induced by strike-slip movements along these focused self-lubricated weak lithospheric zones, along with the northward drift of Pangea. These processes occurred simultaneously with a major mantle reorganization from a huge cold downwelling to a hot upwelling event caused by thermal energy storage beneath Pangea.Centro de Investigaciones Geológica
Igneous-metamorphic basement of Taquetrén Range, Patagonia, Argentina: A key locality for the reconstruction of the Paleozoic evolution of Patagonia.
Fil: Renda, Emiliano Manuel. CONICET-Universidad de Buenos Aires. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina.Fil: González, Pablo Diego. Universidad Nacional de Río Negro. Instituto de Investigación en Paleobiología y Geología. Río Negro, Argentina.Fil: Vizán, Haroldo. CONICET-Universidad de Buenos Aires. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina.Fil: Oriolo Sebastián. CONICET-Universidad de Buenos Aires. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina.Fil: Prezzi, Claudia. CONICET-Universidad de Buenos Aires. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina.Fil: Ruíz González, Víctor. CONICET-Universidad de Buenos Aires. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), Intendente Güiraldes 2160, C1428EHA, Buenos Aires, Argentina.Fil: Schulz, Bernhard. Institute of Mineralogy, Division of Economic Geology and Petrology, TU Bergakademie Freiberg, Freiberg/Saxony, Germany.Fil: Krause, Joachim. Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Freiberg, Germany.Fil: Basei, Miguel Angel Stip. Centro de Pesquisas Geocronológicas, Instituto de Geociencias, USP, Rua do Lago 562, CEP 05508-080, Sao Paulo, SP, Brazil.In this contribution, we present the stratigraphy of the igneous and metamorphic rocks of the Taquetr´en Range, a sector located in the southernmost margin of the North Patagonian Massif (42◦42′00′′S - 69◦30′00′′W). Its igneous and metamorphic basement is composed of the newly defined “Lagunita Salada Igneous-Metamorphic Complex” (LSIMC), “Paso del Sapo Plutonic Complex” (PSPC) and “Sierra de Taquetr´en Plutonic Complex” (STPC). The LSIMC comprises gneisses, schists, amphibolites and migmatites, which share a S1–S2 penetrative foliation with a mean orientation of 300◦–330◦/40◦–60◦NE. Based on mineral paragenesis, metamorphic conditions
of these rocks are the result of Barrovian-type metamorphism in the upper amphibolite to granulite facies. EPMA Th–U–Pb ages of monazites display two isochron main populations at 379 ±5 Ma and 323 ±5 Ma, which suggest long-term high-temperature conditions for the region between Late Devonian and Carboniferous times. The Complex is intruded by concordant tonalites, granodiorites, porphyric granites and minor pegmatites and felsic dykes, which are grouped in the PSPC. Both the LSIMC and PSPC are intruded by unfoliated peraluminous granitoids grouped in the STPC. Based on field and microstructural data, the pervasive foliation identified in the PSPC was caused by processes ranging from magmatic flow to solid-state deformation, indicating a syntectonic emplacement. Zircon U–Pb analysis by LA-ICP-MS in the PSPC shows two distinguishable groups with concordia ages of 314.1 ±2.2 Ma and 302.8 ±2.2 Ma, interpreted as the crystallization and subsequent deformation age respectively, related to protracted high-strain conditions. The outcrops in this area represent an almost full tectonic cycle encompassing from medium-high grade metamorphic rocks and syn-tectonic intrusions to post- tectonic intrusions, therefore configuring a key locality for the analysis of North Patagonian Paleozoic evolution.
Moreover, based on the compilation of U–Pb zircon ages, a ~20 My magmatic gap period (360-340 Ma) is recognized in the southwestern margin of the North Patagonian Massif coeval with amphibolite-granulite facies metamorphism in different sectors of the Central Patagonian Igneous-Metamorphic Belt, presenting thus important implications for the tectonic evolution of the area.
The birth of the Gondwanide arc: Insights into Carboniferous magmatism of the North Patagonian Andes (Argentina)
New geological, structural, and geochemical information was obtained for the late Paleozoic basement of the North Patagonian Andes. The studied rocks are mainly formed by foliated diorites and gabbro-diorites with a primitive continental arc signature, according to trace elements patterns. Similar petrological and structural characteristics, together with previously reported ages between ca. 330 and 323 Ma, permit the correlation of these rocks with plutonic bodies located in the North Patagonian Andes, North Patagonian Massif and Cordillera de la Costa of Chile, documenting the onset of Gondwanide subduction along the proto-Pacific margin of Gondwana between ca. 37 and 45°S. Geochemical and geochronological data, together with field evidence, suggest mafic magma replenishment during the construction of this large batholith. The presence of sheeted zones and magmatic fabrics allow to interpret pluton emplacement in a highly coupled system linked with a tectonically active setting, under pressure conditions of ca. 6 ± 1 Kbar.Fil: Yoya, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Oriolo, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Gonzalez, Pablo Diego. Servicio Geologico Minero Argentino. Delegacion General Roca.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Restelli, Florencia Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Renda, Emiliano Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; ArgentinaFil: Bechis, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Diversidad Cultural y Procesos de Cambio. Universidad Nacional de Río Negro. Instituto de Investigaciones en Diversidad Cultural y Procesos de Cambio; ArgentinaFil: Newbery, Jorónimo Christie. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias Geológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marcos, Paulo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; ArgentinaFil: Olaizola, Ezequiel Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Diversidad Cultural y Procesos de Cambio. Universidad Nacional de Río Negro. Instituto de Investigaciones en Diversidad Cultural y Procesos de Cambio; Argentin
Linking accretionary orogens with continental crustal growth and stabilization: Lessons from Patagonia
The origin of the continental crust and the tectonic significance of Paleozoic magmatic rocks of Patagonia (southernmost South America) remain one of the main enigmas in the history of the Gondwana supercontinent. Here, new whole-rock geochemistry together with coupled zircon U-Pb and Lu-Hf isotopic data of Devonian to Permian intrusive rocks of northern Patagonia are integrated with a revised geochemical and isotopic database of the region, providing a novel model for the tectonomagmatic evolution and related crustal growth mechanisms. The development of a Devonian retreating accretionary orogen associated with crustal thinning was succeeded by a late Carboniferous to Permian advancing orogen and crustal shortening, resulting from slab shallowing. The latter was related to the Gondwanide Orogeny, a major transpressional tectonic event that led to the maturation and stabilization of the continental crust of Patagonia due to widespread magmatism and crustal thickening, which culminated with Permian-Triassic slab break-off. Addition of juvenile mantle-derived magmas is more significant during the Devonian, whereas a progressively increase in crustal reworking is documented from the late Carboniferous to the Permian due to crustal thickening. Therefore, this non-collisional model favors an in situ middle to late Paleozoic crustal growth of Patagonia during changing dynamics of accretionary orogens at the proto-Pacific margin of southwestern Gondwana.Fil: Oriolo, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Gonzalez, Pablo Diego. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Secretaría de Industria y Minería. Servicio Geológico Minero Argentino; ArgentinaFil: Renda, Emiliano Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; ArgentinaFil: Stipp Basei, Miguel Angelo. Universidade de Sao Paulo; BrasilFil: Otamendi, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; ArgentinaFil: Cordenons, Pablo Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Marcos, Paulo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; ArgentinaFil: Yoya, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Ballivian Justiniano, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Suárez, Rodrigo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; Argentin
Paleotethys slab pull, self-lubricated weak lithospheric zones, poloidal and toroidal plate motions, and Gondwana tectonics
The Gondwana megacontinent was composed of different domains separated by self-lubricated weak lithospheric zones, two of which could have extended into Laurasia. Displacement vectors determined through three consecutive paleomagnetism-constrained paleogeographic reconstructions (Early Pennsylvanian-early Guadalupian, ca. 320-270 Ma; late Guadalupian-Middle Triassic, ca. 260-240 Ma; and Late Triassic-early Late Jurassic, ca. 230-160 Ma) show similar orientations to coeval tectonic stresses along Gondwana. Triggered by slab pull at the northern subduction margin of the Paleotethys Ocean, differential displacements between the Gondwana domains caused localized deformation along their borders, reactivating old weak lithospheric zones (e.g., Ventana fold belt south of Buenos Aries province, Argentina; basins such as Cuvette in central Africa; and Neuquén on the Pacific margin of Gondwana). We propose that the wide extent of these structures was possible due to the transmission of mantle toroidal flow induced by strike-slip movements along these focused self-lubricated weak lithospheric zones, along with the northward drift of Pangea. These processes occurred simultaneously with a major mantle reorganization from a huge cold downwelling to a hot upwelling event caused by thermal energy storage beneath Pangea.Centro de Investigaciones Geológica
Paleomagnetic data from the Precordillera of northern Chile: A multiphase rotation history related to a multiphase deformational history
One of the most conspicuous features of the Andean chain is the change in its trajectory from NW-SE to N-S at 18°S known as the Bolivian Orocline. Although the Central Andes rotation pattern (CARP) agrees roughly with the geometry of the orocline, large variations and greater than expected rotation magnitudes cannot be explained by a progressive oroclinal bending history alone. In this work, 621 oriented samples from Mesozoic and Cenozoic rocks in three different areas in the Precordillera of northern Chile, north of Calama, were analyzed. The samples were subjected to different demagnetization processes to isolate the characteristic magnetic remanence and calculate the tectonic rotations. By sampling pretectonic, syntectonic and post-tectonic units, the rotation history of different structural blocks was determined and related to specific deformational events. The results obtained from Lower Cretaceous units intruded or overlain by Upper Cretaceous units not rotated or recording smaller rotations indicate the existence of 20° clockwise and 20° counterclockwise rotated sites related to the Late Cretaceous Peruvian orogenic event. Data obtained from Upper Cretaceous-lowermost Paleocene rocks show areas slightly clockwise rotated (10?15°) and not rotated during the early Paleocene ?K-T" deformation event. Remanence data from Upper Cretaceous-Eocene units across the area indicate as much as 20° clockwise rotation in the hanging wall of the Eocene Chintoraste-Quetena-Rabonas-Jaspe Reverse Fault System, whereas the footwall was unaffected. This Eocene rotation occurred during the early stages of the Eocene-Oligocene Incaic orogenic phase, prior to emplacement of the 40?37 Ma Fortuna Granodiorite Complex. Current models propose that rotations in CARP were entirely Cenozoic and largely accomplished in a single Paleogene event. Our data indicate that each of the Peruvian, K-T and Incaic deformation events contributed to CARP, with each event generating a non-uniform pattern of rotations which was superimposed on prior rotations in a non-uniform manner.Fil: Puigdomenech Negre, Carla Gimena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Somoza, Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Tomlinson, A.. Servicio Nacional de Geologia y Mineria (SERNAGEOMIN); ChileFil: Renda, Emiliano Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentin