9 research outputs found

    MASSART-PIÉRARD, Françoise. La langue : Vecteur d'organisation internationale. Louvain-la-Neuve, Éditions d'Acadie, 1995, 194 v.

    Get PDF
    Gait and balance training is an essential ingredient for locomotor rehabilitation of patients with neurological impairments. Robotic overhead support systems may help these patients train, for example by relieving them of part of their body weight. However, there are only very few systems that provide support during overground gait, and these suffer from limited degrees of freedom and/or undesired interaction forces due to uncompensated robot dynamics, namely inertia. Here, we suggest a novel mechanical concept that is based on cable robot technology and that allows three-dimensional gait training while reducing apparent robot dynamics to a minimum. The solution does not suffer from the conventional drawback of cable robots, which is a limited workspace. Instead, displaceable deflection units follow the human subject above a large walking area. These deflection units are not actuated, instead they are implicitly displaced by means of the forces in the cables they deflect. This leads to an underactuated design, because the deflection units cannot be moved arbitrarily. However, the design still allows accurate control of a three-dimensional force vector acting on a human subject during gait. We describe the mechanical concept, the control concept, and we show first experimental results obtained with the device, including the force control performance during robot-supported overground gait of five human subjects without motor impairments

    Journal of Neuroscience Methods 159 (2007) 158–169 Computation of gaze orientation under unrestrained head movements

    No full text
    Given the high relevance of visual input to human behavior, it is often important to precisely monitor the spatial orientation of the visual axis. One popular and accurate technique for measuring gaze orientation is based on the dual search coil. This technique does not allow for very large displacements of the subject, however, and is not robust with respect to translations of the head. More recently, less invasive procedures have been developed that record eye movements with camera-based systems attached to a helmet worn by the subject. Computational algorithms have also been developed that can calibrate eye orientation when the head’s position is fixed. Given that camera-based systems measure the eye’s position in its orbit, however, the reconstruction of gaze orientation is not as straightforward when the head is allowed to move. In this paper, we propose a new algorithm and calibration method to compute gaze orientation under unrestrained head conditions. Our method requires only the accurate measurement of orbital eye position (for instance, with a camera-based system), and the position of three points on the head. The calculations are expressed in terms of linear algebra, so can easily be interpreted and related to the geometry of the human body. Our calibration method has been tested experimentally and validated against independent data, proving that is it robust even under large translations, rotations, and torsions of the head. © 2006 Elsevier B.V. All rights reserved

    Multi-physics modelling of a compliant humanoid robot

    No full text
    We present a multibody simulator being used for compliant humanoid robot modelling and report our reasoning for choosing the settings of the simulator's key features. First, we provide a study on how the numerical integration speed and accuracy depend on the coordinate representation of the multibody system. This choice is particularly critical for mechanisms with long serial chains (e.g. legs and arms). Our second contribution is a full electromechanical model of the inner dynamics of the compliant actuators embedded in the COMAN robot, since joints' compliance is needed for the robot safety and energy efficiency. Third, we discuss the different approaches for modelling contacts and selecting an appropriate contact library. The recommended solution is to couple our simulator with an open-source contact library offering both accurate and fast contact modelling. The simulator performances are assessed by two different tasks involving contacts: a bimanual manipulation task and a squatting tasks. The former shows reliability of the simulator. For the latter, we report a comparison between the robot behaviour as predicted by our simulation environment, and the real one

    Control of Bimanual Rhythmic Movements: Trading Efficiency for Robustness Depending on the Context

    Full text link
    This paper investigates how the efficiency and robustness of a skilled rhythmic task compete against each other in the control of a bimanual movement. Human subjects juggled a puck in 2D through impacts with two metallic arms, requiring rhythmic bimanual actuation. The arms kinematics were only constrained by the position, velocity and time of impacts while the rest of the trajectory did not influence the movement of the puck. In order to expose the task robustness, we manipulated the task context in two distinct manners: the task tempo was assigned at four different values (hence manipulating the time available to plan and execute each impact movement individually); and vision was withdrawn during half of the trials (hence reducing the sensory inflows). We show that when the tempo was fast, the actuation was rhythmic (no pause in the trajectory) while at slow tempo, the actuation was discrete (with pause intervals between individual movements). Moreover, the withdrawal of visual information encouraged the rhythmic behavior at the four tested tempi. The discrete versus rhythmic behavior give different answers to the efficiency/robustness trade-off: discrete movements result in energy efficient movements, while rhythmic movements impact the puck with negative acceleration, a property preserving robustness. Moreover, we report that in all conditions the impact velocity of the arms was negatively correlated with the energy of the puck. This correlation tended to stabilize the task and was influenced by vision, revealing again different control strategies. In conclusion, this task involves different modes of control that balance efficiency and robustness, depending on the context
    corecore