13 research outputs found

    Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered <it>Escherichia coli </it>(Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in <it>E. coli</it>. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in <it>E. coli </it>cells.</p> <p>Results</p> <p>Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in <it>E. coli </it>BL21(DE3) host cells in the absence of isopropyl-β-D-thiogalactopyranoside (IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, <it>in vivo</it>, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture.</p> <p>Conclusion</p> <p>The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large scale production. The physicochemical, immunological and biological analyses showed that this protocol can be useful to develop therapeutic bioproducts. In summary, the combination of different experimental strategies presented here allowed an efficient and cost-effective protocol for rhG-CSF production. These data may be of interest to biopharmaceutical companies interested in developing biosimilars and healthcare community.</p

    Synthesis of magnetic nanoparticles functionalized with histidine and nickel to immobilize His-tagged enzymes using β-galactosidase as a model

    Get PDF
    The aim of this study was to synthesize iron magnetic nanoparticles functionalized with histidine and nickel (Fe3O4-His-Ni) to be used as support materials for oriented immobilization of His-tagged recombinant enzymes of high molecular weight, using β-galactosidase as a model. The texture, morphology, magnetism, thermal stability, pH and temperature reaction conditions, and the kinetic parameters of the biocatalyst obtained were assessed. In addition, the operational stability of the biocatalyst in the lactose hydrolysis of cheese whey and skim milk by batch processes was also assessed. The load of 600 Uenzyme/gsupport showed the highest recovered activity value (~50%). After the immobilization process, the recombinant β-galactosidase (HisGal) showed increased substrate affinity and greater thermal stability (~50×) compared to the free enzyme. The immobilized β-galactosidase was employed in batch processes for lactose hydrolysis of skim milk and cheese whey, resulting in hydrolysis rates higher than 50% after 15 cycles of reuse. The support used was obtained in the present study without modifying chemical agents. The support easily recovered from the reaction medium due to its magnetic characteristics. The iron nanoparticles functionalized with histidine and nickel were efficient in the oriented immobilization of the recombinant β-galactosidase, showing its potential application in other high-molecular-weight enzymes

    Human interferon B1 ser17: Coding DNA synthesis, expression, purification and characterization of bioactive recombinant protein

    No full text
    A protocol to produce large amounts of bioactive homogeneous human interferon β1 expressed in Escherichia coli was developed. Human interferon β1 ser17 gene was constructed, cloned and subcloned, and the recombinant protein expressed in E. coli cells. Solubilization of recombinant human interferon β1 ser17 (rhIFN-β1 ser17) was accomplished by employing a brief shift to high alkaline pH in the presence of non-ionic detergent. The recombinant protein was purifi ed by three chromatographic steps. N-terminal amino acid sequencing and mass spectrometry analysis provided experimental evidence for the identity of the recombinant protein. Reverse phase liquid chromatography demonstrated that the content of deamidates and sulphoxides was similar to a commercial standard. Size exclusion chromatography demonstrated the absence of high molecular mass aggregates and dimers. The protocol represents an effi cient and high-yield method to obtain bioactive homogeneous monomeric rhIFN-β1 ser17 protein. It may thus represent an important step towards scaling up for rhIFN-β1 ser17 large-scale production. © 2010 Villela AD, et al

    Evaluation of the Ability of Miltefosine Associated with Topical GM-CSF in Modulating the Immune Response of Patients with Cutaneous Leishmaniasis

    No full text
    Cutaneous leishmaniasis (CL) due to L. braziliensis is associated with an exaggerated inflammatory response and tissue damage. Miltefosine is more effective than pentavalent antimony (Sbv) in the treatment of CL, and here, we evaluate the ability of Sbv, miltefosine, and GM-CSF administered intravenously, orally, or topically, respectively, to modify the immune response. Patients were treated with miltefosine plus GM-CSF, miltefosine plus placebo, or Sbv. Mononuclear cells were stimulated with soluble Leishmania antigen (SLA) on day 0 and day 15 of therapy, and cytokine levels were determined in supernatants by ELISA. The lymphocyte proliferation and oxidative burst were evaluated by flow cytometry, and the degree of infection and Leishmania killing by optical microscopy. Proliferation of CD4+ T cells were enhanced in patients using miltefosine and in CD8+ T cells when GM-CSF was associated. Enhancement in the oxidative burst occurred in the miltefosine plus GM-CSF group on day 15 of therapy. Moreover, the number of L. braziliensis in infected monocytes on day 15 as well as the percentage of infected cells was lower after 48- and 72-hour culture in cells from patients treated with miltefosine plus GM-CSF. In addition to the ability of miltefosine to kill Leishmania, the changes in the immune response caused by miltefosine and GM-CSF may increase the cure rate of CL patients using these drugs
    corecore