110 research outputs found

    Fibre reinforced ceramic moulding composites manufacture and characterisation.

    Get PDF
    PhDCeramic materials have considerable attraction for use in applications where the service temperatures are high and where fire performance and non-combustibility are important. Unfortunately most monolithic ceramic materials are extremely brittle which limits their use for structural applications. The development of fibre and particulate reinforced ceramic composites provides a route to achieving increased toughness in the materials, although this is often at the expense of ultimate strengths and/or the process-ability of the materials. Many reinforcing fibres used with ceramics are inherently expensive and manufacturing routes to produce fibre reinforced materials can involve high processing temperatures and are consequently expensive. A key goal of this research therefore is to develop a new type of ceramic matrix composites that combine toughness, strength and process-ability to provide a cost effective structural material. The research described in this thesis has been concerned with the development and characterisation of a series of ceramic compounds that can be moulded at modest temperatures( 130-160" C) and pressures in a manufacturing system that replicates dough moulding compounds (DMC) as used for polymeric matrix composites. The conventional polyester matrix of polymeric DMC has been replaced by a soluble inorganic system which is compounded with fibres, fillers and hardening agents to produce a paste-like or doughy substance The handle-ability of the material is determined by the viscosity of the matrix and the type or amount of fillers and additives present. The research has involved a careful set of experiments in which the formulation of the ceramic DMC has been systematically varied in order to achieve an optimum viscosity for storage and handling together with a further series of experiments studying the hardening and cure of the compounds. The mechanical properties of the compounds have been measured and additional formulation changes have been introduced to maintain desirable processing characteristics while improving mechanical properties, and in particular the impact resistance using instrumented falling weight impact machines. Finally the fire properties of the compounds have been studied using cone calorimetry and indicative furnace testing. The structure of the compound has been studied throughout the programme with various microscopic techniques and thermal analysis systems used to characterise the materials, their dispersion and changes that occurred during processing and after high temperature exposure. The final result of the programme has been the identification of a range of material formulations that can provide a tough moulding compound, capable of high temperature service use, that possesses useful structural properties and which can be processed cheaply at modest temperatures using low cost materials

    The tribological properties of zinc borate ultrafine powder as a lubricant additive in sunflower oil

    Get PDF
    This paper presents an investigation on the tribological properties of zinc borate ultrafine powder employed as a lubricant additive in sunflower oil. The stable dispersions of 0.5 wt%, 1 wt% and 2 wt% zinc borate ultrafine powder in sunflower oil were achieved by using an ultrasonic homogeniser. Both a 4-ball tester and a pin-on-disc tester were employed to evaluate the anti-wear and friction reduction capabilities of zinc borate ultrafine powder. Tribo-films with dark colour were generated on the worn surfaces and showed a good contrast with the substrate. The worn surface with different morphologies reflected as the colour alterations on the worn surface were observed when different lubricants were applied. The morphology and elemental analysis of the worn surfaces were studied using atomic force microscopy (AFM) and scanning electronic microscopy (SEM). Mechanical properties of the tribo-films and substrates were studied with a nano-indentation tester. Test results suggest that tribo-films generated on the worn surface have a relatively low hardness compared with the steel substrate. The substrates on the worn surfaces lubricated in sunflower oil with the powder demonstrated higher hardness than that of the substrate lubricated with pure sunflower oil due to the possible tribo-chemical reaction between the zinc borate additive and substrate. The combination of sunflower oil with 0.5% zinc borate ultrafine powder has delivered the most balanced performance in friction and wear reduction. This study has demonstrated the possibility of application of this industrially applicable solid lubricant additive (zinc borate) with a decomposable vegetable based lubricant oil.Peer reviewedFinal Accepted Versio

    Antibacterial Performance of a Cu-bearing Stainless Steel against Microorganisms in Tap Water

    Get PDF
    This document is the Accepted Manuscript of the following article: Mingjun Li, Li Nan, Dake xu, Guogang Ren, Ke Yang, ‘Antibacterial Performance of a Cu-bearing Stainless Steel against Microorganisms in Tap Water’, Journal of Materials Science & Technology, Vol. 31 (3): 243-251, March 2015, DOI: https://doi.org/10.1016/j.jmst.2014.11.016, made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License CC BY NC-ND 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).Tap water is one of the most commonly used water resources in our daily life. However, the increasing water contamination and the health risk caused by pathogenic bacteria, such as Staphylococcus aureus and Escherichia coli have attracted more attention. The mutualism of different pathogenic bacteria may diminish antibacterial effect of antibacterial agents. It was found that materials used for making pipe and tap played one of the most important roles in promoting bacterial growth. This paper is to report the performance of an innovative type 304 Cu-bearing stainless steel (304CuSS) against microbes in tap water. The investigation methodologies involved were means of heterotrophic plate count, contact angle measurements, scanning electron microscopy for observing the cell and subtract surface morphology, atomic absorption spectrometry for copper ions release study, and confocal laser scanning microscopy used for examining live/dead bacteria on normal 304 stainless steel and 304CuSS. It was found that the surface free energy varied after being immersed in tap water with polar component and Cu ions release. The results showed 304CuSS could effectively kill most of the planktonic bacteria (max 95.9% antibacterial rate), and consequently inhibit bacterial biofilms formation on the surface, contributing to the reduction of pathogenic risk to the surrounding environments.Peer reviewe

    Physio-chemical and antibacterial characteristics of pressure spun nylon nanofibres embedded with functional silver nanoparticles

    Get PDF
    © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Date of Acceptance: 05/06/2015A novel and facile approach to prepare hybrid nanoparticle embedded polymer nanofibers using pressurised gyration is presented. Silver nanoparticles and nylon polymer were used in this work. The polymer solution's physical properties, rotating speed and the working pressure had a significant influence on the fibre diameter and the morphology. Fibres in the range of 60–500 nm were spun using 10 wt.%, 15 wt.% and 20 wt.% nylon solutions and these bead-free fibres were processed under 0.2 MPa and 0.3 MPa working pressure and a rotational speed of 36,000 rpm. 1–4 wt.% of Ag was added to these nylon solutions and in the case of wt.% fibres in the range 50–150 nm were prepared using the same conditions of pressurised gyration. Successful incorporation of the Ag nanoparticles in nylon nanofibres was confirmed by using a combination of advanced microscopical techniques and Raman spectrometry was used to study the bonding characteristics of nylon and the Ag nanoparticles. Inductively coupled plasma mass spectroscopy showed a substantial concentration of Ag ions in the nylon fibre matrix which is essential for producing effective antibacterial properties. Antibacterial activity of the Ag-loaded nanofibres shows higher efficacy than nylon nanofibres for Gram-negative Escherichia coli and Pseudomonas aeruginosa microorganisms, and both Ag nanoparticles and the Ag ions were found to be the reason for enhanced cell death in the bacterial solutionPeer reviewe

    Biological evaluations of novel 2,3,3-Trisphosphonate in osteoclastic and osteoblastic activities

    Get PDF
    Bisphosphonates (BPs) are the first line treatment for many bone diseases including hypercalcimia associated with bone malignancies. In this paper, we introduce a new analogue of bisphosphonate called the 2,3,3-Trisphosphonate (2,3,3-TriPP) that was synthesised in a two steps reaction. In vitro investigations using a medically known bisphosphonate (Etidronate) and the 2,3,3-TrisPP were performed with an aim to evaluate biological effect of this novel compound in major bone cells. 2,3,3-TrisPP showed to have potential to supress the bone resorption process, as our data found that this novel compound exhibited cytotoxic effect in osteoclastic cells at a low concentration of 0.172 mg/mL (LC50). A molecular docking computational simulation calculated a high level of binding affinity between the human farnesyl pyrophosphate synthase (hFPPS) and 2,3,3-TrisPP. This calculation suggested 2,3,3TrisPP may have undergone the mevalonate pathway to prevent the prenylation step during biosynthesis and subsequently resulted in the deactivation of osteoclastic cells. Finally, high levels of osteoblast mineralisation potentials were recorded upon treatments with 2,3,3-TrisPP (0.01-0.1 mg/ml), which implied 2,3,3-TrsiPP may also facilitate bone regeneration.Peer reviewe

    Antibacterial Performance of Cu-Bearing Stainless Steel against Staphylococcus aureus and Pseudomonas aeruginosa in Whole Milk

    Get PDF
    This document is the Accepted Manuscript of the following article: Li Nan, Guogang Ren, Donghui Wang and Ke Yang, ‘Antibacterial Performance of Cu-Bearing Stainless Steel against Staphylococcus aureus and Pseudomonas aeruginosa in Whole Milk’, Journal of Materials Science and Technology, Vol 32(5): 445-451, May 2016, doi: http://dx.doi.org/10.1016/j/jmst.2016.01.0002. This manuscript version is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License CC BY NC-NC 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.Pathogen microorganisms exist in various environments such as dairy processing facilities. They are not easily eliminated, and significantly raise the risk of bacterial contamination. The inhibition ability of a novel type 304 Cu-bearing stainless steel (304CuSS) with nano-sized Cu-rich precipitates against Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) added whole milk was investigated in this study. The results showed that after 24 h contact, the inhibition rates of the 304CuSS against S. aureus and P. aeruginosa added whole milk reached 99.2% ± 0.3% and 99.3% ± 0.2%, respectively, in contrast with the 304SS. In the plain whole milk, the inhibition rate of the 304CuSS also reached 66.9% ± 2.0% compared with the 304SS. The results demonstrated that the 304CuSS killed majority of the planktonic bacteria, and inhibited sessile bacteria adherence to the steel surface in the whole milk with and without bacteria addition, significantly reducing the bacterial growth rate. These research outcomes explicitly show an application potential of this novel antibacterial stainless steel in the dairy related food industry.Peer reviewedFinal Accepted Versio

    Molecular dynamics simulation on surface modification of a quantum scaled CuO nano-clusters to support their experimental studies

    Get PDF
    © 2022 Springer Nature Limited. This article is licensed under a Creative Commons Attribution 4.0 International License, to view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Interest in nanoparticle modification using functional chemicals has increased rapidly, as it is allowing more freedom of physiochemical tuning of the nanoparticle’s surfaces into biomedically oriented and designated properties. However, the observation and detection of the thin molecular layers on the nanoparticle surface are very challenging under current analytical facilities. The focus of this research is to demonstrate fundamental interactions between the surface treated nanoparticles and their host liquid media using lab-based experimentation and simulation. In this research, investigation has been carried out on analyzing the surface compatibility and the diffusivity of modified CuO nanoparticles with short-chain carboxylate-terminated molecules in biofluids. Moreover, during the current Covid-19 pandemic, the Cu/CuONPs have proved effective in killing SARS-CoV1/2 and other airborne viruses. This research was conducted at the molecular level with joint consideration of experimental and simulation studies for characterization of variables. Experimental tests conducted using Fourier Transmission Infrared (FTIR) demonstrated several ranges of interest from FTIR responses, specifically, detection of three major carboxylate attachments (i.e., 1667 cm-1 -1609 cm-1, 1668 cm-1 - 1557 cm-1, etc.) were found. From simulation, similar attachment styles were observed by the LAMMPS simulation package that mimicked similar agglomerations with a predicted diffusion coefficient as recorded to be 2.28E-9m2/s. Viscosities of modified nanofluids were also compared with unmodified nanofluids for defining aggregation kinetics.Peer reviewe

    Anti-fungal bandages containing cinnamon extract

    Get PDF
    © 2019 The Authors. International Wound Journal published by Medicalhelplines.com Inc and John Wiley & Sons Ltd.Cinnamon-containing polycaprolactone (PCL) bandages were produced by pressurised gyration and their anti-fungal activities against Candida albicans were investigated. It was found that by preparing and spinning polymer solutions of cinnamon with PCL, fibres capable of inhibiting fungal growth could be produced, as observed in disk diffusion tests for anti-fungal susceptibility. Fascinatingly, compared with raw cinnamon powder, the novel cinnamon-loaded fibres had outstanding long-term activity. The results presented here are very promising and may indeed accelerate a new era of using completely natural materials in biomedical applications, especially in wound healing.Peer reviewe

    Comparative Study of the Antimicrobial Effects of Tungsten Nanoparticles and Tungsten Nanocomposite Fibres on Hospital Acquired Bacterial and Viral Pathogens

    Get PDF
    © 2020 The Author(s). This is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.A significant proportion of patients acquire hospital associated infections as a result of care within the NHS each year. Numerous antimicrobial strategies, such as antibiotics and surface modifications to medical facilities and instruments, have been devised in an attempt to reduce the incidence of nosocomial infections, but most have been proven unsuccessful and unsustainable due to antibiotic resistance. Therefore, the need to discover novel materials that can combat pathogenic microorganisms is ongoing. Novel technologies, such as the potential use of nanomaterials and nanocomposites, hold promise for reducing these infections in the fight against antimicrobial resistance. In this study, the antimicrobial activity of tungsten, tungsten carbide and tungsten oxide nanoparticles were tested against Escherichia coli, Staphylococcus aureus and bacteriophage T4 (DNA virus). The most potent nanoparticles, tungsten oxide, were incorporated into polymeric fibres using pressurised gyration and characterised using scanning electron microscopy and energy dispersive X-ray spectroscopy. The antimicrobial activity of tungsten oxide/polymer nanocomposite fibres was also studied. The results suggest the materials in this study promote mediation of the inhibition of microbial growth in suspension.Peer reviewe

    Investigation of vehicle ride height and diffuser ramp angle on downforce and efficiency

    Get PDF
    © 2018 The Author(s). The final, definitive version of this paper has been published in Knight, J., Spicak, M., Kuzenko, A., Haritos, G., & Ren, G. (2019). Investigation of vehicle ride height and diffuser ramp angle on downforce and efficiency. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(8), 2139–2145. by Sage Publications Ltd. All rights reserved. It is available at: https://doi.org/10.1177/0954407018776767.Diffusers are typically used in motorsport to generate negative lift (downforce). They also reduce aerodynamic drag and so significantly enhance aerodynamic efficiency. The amount of downforce generated is dependent on ride height, diffuser ramp angle and its relative length to that of the vehicle length. This paper details a numerical investigation of the effects of ride height and diffuser ramp angle in order to find an optimum downforce and efficiency for the inverted Ahmed model. A short and long diffuser with ratios of 10% and 35%, respectively, to that of vehicle length are studied. The short diffuser produced lower maximum downforce and efficiency at a lower ride height and lower angle when compared to the longer diffuser. The long diffuser produced highest downforce and the best efficiency with a ramp angle of 25° at ride height ratio of 3.8% when compared to vehicle length. Different ride heights were found to correspond to different diffuser ramp angles to achieve optimum downforce and efficiencies.Peer reviewe
    • …
    corecore