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Abstract 

Ceramic materials have considerable attraction for use in applications where the service 
temperatures are high and where fire performance and non-combustibility are important. 
Unfortunately most monolithic ceramic materials are extremely brittle which limits their 
use for structural applications. The development of fibre and particulate reinforced 
ceramic composites provides a route to achieving increased toughness in the materials, 
although this is often at the expense of ultimate strengths and/or the process-ability of the 
materials. Many reinforcing fibres used with ceramics are inherently expensive and 
manufacturing routes to produce fibre reinforced materials can involve high processing 
temperatures and are consequently expensive. A key goal of this research therefore is to 
develop a new type of ceramic matrix composites that combine toughness, strength and 
process-ability to provide a cost effective structural material. 

The research described in this thesis has been concerned with the development and 
characterisation of a series of ceramic compounds that can be moulded at modest 
temperatures (130-160 "C) and pressures in a manufacturing system that replicates dough 
moulding compounds (DMQ as used for polymeric matrix composites. The conventional 
polyester matrix of polymeric DMC has been replaced by a soluble inorganic system 
which is compounded with fibres, fillers and hardening agents to produce a paste-like or 
doughy substance. The handle-ability of the material is determined by the viscosity of the 
matrix and the type or amount of fillers and additives present. 

The research has involved a careful set of experiments in which the formulation of the 
ceramic DMC has been systematically varied in order to achieve an optimum viscosity for 
storage and handling together with a further series of experiments studying the hardening 
and cure of the compounds. The mechanical properties of the compounds have been 
measured and additional formulation changes have been introduced to maintain desirable 
processing characteristics while improving mechanical properties, and in particular the 
impact resistance using instrumented falling weight impact machines. Finally the fire 
properties of the compounds have been studied using cone calorimetry and indicative 
furnace testing. 

The structure of the compound has been studied throughout the programme with various 
microscopic techniques and thermal analysis systems used to characterise the materials, 
their dispersion and changes that occurred during processing and after high temperature 
exposure. 

The final result of the programme has been the identification of a range of material 
formulations that can provide a tough moulding compound, capable of high temperature 
service use, that possesses useful structural properties and which can be processed 
cheaply at modest temperatures using low cost materials. 
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Chapter I 

Ile, 1 lf- 

unanter x- 

INTRODUCTION 

Introduction 

In a fibre reinforced ceramic moulding compound, the main constituent materials are 
reinforcement (glass or carbon fibres) and a ceramic matrix. If the matrix is a metal silicate 
then this could be tailored to provide stability at elevated temperatures over 1200 "C. The 

selection of the reinforcement for applications therefore, becomes a key factor for the 

mechanical properties at low and medium temperature ranges (room temperature to 600 
OC). 

It is known that bulk silica-based glasses (E, C and AR-glass) start to decline in strength 
when they are subjected to temperatures greater than 250 *C, and they have softening 
temperatures around 800 to 850 OC (Hull D, 1996). For non-structural applications, with 
working temperatures lower than 800 "C, these materials could have advantages in terms 

of low cost and easy manufacture. In the temperature range between 300 'C to 800 "C, the 

glass fibres encapsulated in a ceramic compound are expected to give reasonable strength 
and to inhibit crack initiation. 

When the temperature is over 800 "C, normal glass fibres become soft and can melt if the 
temperature continues to increase to over 1200 'C. In a silicate matrix composite, the glass 
fibres could fuse with the matrix. 

The geneml concept of materials selection for heat protection and fire resistance has been 
illustrated in Fig. 1.1. As indicated, conventional polymer based composites could not be 

used when the temperatures exceed 200 'C with what ever reinforcement is used. Thermal 
degradation is fully controlled by the polymer matrix system although slight 
improvements in HDT can be made by a carefully selecting fillers and fibres. For instance 
in polymer DMC/SMC, 300 'C is the best HDT achieved by selecting suitable matrix and 
fillers. 
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Other fibres, for example, carbon fibre, can retain strength at elevated temperatures as 
high as 1700 T depending on the coating systems. However, compared with glass 
fibres, carbon fibres are too expensive for most applications. In terms of cost 
effectiveness, for applications in civil and general engineering, glass fibres should be the 
first choice for heat resistance, thermal insulation and fire barTier requirements. 

High performance fibres like A1203 fibre (melting temperature 2050 'Q, SiC fibre 

(sublimes 2700 OC), retain their properties to very high temperatures, providing no 
adverse reaction occurs with the matrix materials either during processing or in service. 
The very limited applications again is due to their high price. 

The problem raised here has been that most of these high performance ceramic composites 
were manufactured with expensive reinforcements and matrix systems through very slow 

and multi-stepped preparation and sintering processes such as chemical infiltration and 
tape casting followed by high temperature treatment. Compared to other composites such 

as polymer composites, the processes used for making a modem ceramic composites are 
both time consuming and very expensive. Although newly developed ceramic/composites 
injection moulding process significantly improves the greenware manufacturing 

efficiency, it is still limited by the small product size, high initial tooling investment, and 
the need for high temperature sintering after moulding. 

Because of this, it would be beneficial to find an efficient ceramic composites 

manufacturing method with relatively low cost. Therefore, the purpose of this research is 

to combine an efficient, low cost route provided by traditional fibre/polymer composites 

manufacturing process, particularly DMC, with the high performance properties of a low 

cost ceramic composites. 

More clearly, the basic drive for developing a ceramic moulding composite, in this 

research was to produce a material not only providing mechanical properties similar to 

conventional polymer DMC, but also working at higher temperatures (up to 600-900 'Q. 

The matrix system is based on the liquid metal silicates, which have the capability to be 

chemically cross-linked by mineral salt hardeners (such as Al-Phosphate) at low 

temperatures (<200 'Q. The real function of this hardening material is to trigger the 

silicate polymerisation (cross-linking), accelerate the sol-gel formation process, provide 
enough bonding strength for the glass fibre and the whole composite structure. 
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In more detail, the ceramic moulding composite investigated here is a ceramic based glass 

- glass/ceramic composite with a modified DMC manufacturing technique and compatible 
mineral fillers. With a specially formulated ceramic matrix system and alkali resistant 
glass fibre (AR), the ceramic dough moulding compound (CDMQ has improved 
ductility, compared with the traditional ceramics and glasses. The complete process of 
developing a ceramic moulding compound can be described as a sequence of the raw 
material preparation, manufacturing and moulding, testing of physical, mechanical 
properties and fire performance. The polymerisation of the silicates has been also 
investigated primarily using TEM and other methods in order to determine a basic 

composition for different moulding temperatures. 

This thesis consists of 10 Chapters. In Chapter 2, the background of the ceramic matrix, 
fibre reinforcements and general relevant composite processes are presented as Literature 
Review; Chapter 3 is the testing experimental methods; The material technologies of 
compounding and moulding are in Chapter 4 and 5. The characterisation and optimisation 
of mechanical properties are in Chapter 6 and 7. The material's fire resistance and heat 

performance are presented in Chapter 8. Some application trials are in Chapter 9. Finally 
Chapter 10 is the Conclusion. The general research steps are shown schematically in Fig. 
1.2. 

The evaluation of formulations and optimisation of mechanical properties have been 

carried out by mechanical tests such as tension, flexure and impact on the manufactured 
CDMC panels. The mechanical properties are optimised by tailoring formulations and 
moulding conditions. It is clear that with a brittle matrix, the mechanical properties are 
highly effected by the fibre types and fibre/matrix interfacial properties which reflect the 
formulation, moulding conditions and post curing. 

The fire performance of the material, however, is controlled by the formulation, especially 
the type, volume content of polymers, fibre reinforcement, filler types and structure of the 

products. 'Me material's thermal properties can be determined by the stability of the 
material and the interfacial properties at elevated temperatures. 
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This new compound was used to produce a number of trail mouldings of representative 
industrial components including Heat Shield (Al mould), Heat Shield Cap (steel mould), a 
double curvature track line fairing (Carbon graphite mould). These illustrated the 

advantages of low cost, easy manufacturing, proper mechanical properties and excellent 
fire and heat resistance for the CDMC. 
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Fig. 1.1 Indication of working temperature ranges for different classes of composite 

materials and basic principles of selecting the matrices for polymer/glass fibre/carbon 

fibre/ceramic matrix composites in terms of different application temperatures. 
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CDMC Research and Manufacture 

Ceramic matrix II Fibre reinforcement 

CDMC manufacturing process 

Dough moulding compounds 
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Fig. 1.2 Total schematic view of the manufacturing, moulding and testing of the CDMC 

in this research programme. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Introduction 

Literature review 

Fibre reinforced ceramic composites such as fibre reinforced silicate matrix composites 

are new materials with designable mechanical properties and inherently good fire 

perfonnance. 

For metal silicate based ceramic composites there is not much information available 

presently, although silicates have been used as binders for many years, long before the 

age of industrial manufacture at the turn of this century. Most ceramic research has 

concentrated on high performance or advanced ceramic composites, especially on the 

manufacture and toughening mechanisms. There has been little systematic research 
reported on silicate matrix composites. 

2.2 Advanced ceramic composites 

Advanced ceramic matrix composites include a great variety of materials. Typically, a 

matrix (polycrystalline ceramic or glass) can be modified by the addition of particles, 
flakes, whiskers, fibres or even voids. Advanced ceramic composites can be produced in 

several ways such as chemical infiltration, tape casting, fibre/slurry impregnation, hot 

press moulding, injection moulding and so on. One of the relatively efficient methods for 

producing high performance fibre/ceramic composites e. g. Al-Si-B-O/Al-Si-O-C, 

SiC/SIC/AI, 031 SiC/A'2031 SiC/Cr, SiN, SiCw-Al 
203 

is tape casting/impregnation with 

continuous fibre systems (Fig. 2.1) (Hull and Clyne, 1996). 

In the process, the tapes are cast from a formulated slurry consisting of a liquid, a ceramic 

powder, an organic polymer, a plaster, or a dispenser. Laminates of a wide variety of 

architecture and compositional ranges have been produced by stacking the individual 

layers and then consolidating them (Haug and Schafer, 1992). The great flexibility in 
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designing and tailoring these multi-component systems permits control and enhancement 
of many significant properties. The principle that underpins ceramic composites is that by 
introducing a second phase in a ceramic matrix, a different failure mechanism can be 

trigged that prevents catastrophic failure (or improves other special functionality such as 
fire or thermal performance). 

The intrinsic high stiffness, high hardness, chemical inertia and fire resistance of ceramics 

are derived from the strength of their chemical bonding (Chant, Bleay. 1995). This 
bonding permits little or no movement of dislocations, even at modest temperatures, and 
leads ultimately to brittleness. Because a distribution of flaw sizes is evident in real 
materials, ceramics exhibit a distribution of strength values. From a design engineer's 

perspective, ceramics are unreliable (Strand, 1986). Pure glass/ceramics are very brittle 

materials, although they still could be toughened by some limited methods such as 
increasing fracture surface area, changing the fracture mode (e. g., mode I to mode H or 
III), and mechanical interlocking. However, there are many limitations on the actual use 

of these toughening techniques. 

Producing a rough fracture surface is most readily achieved in ceramic composites by: the 
interaction of tough second-phase particles which hinder crack propagation; weak 
interfaces in certain materials (fibres and whiskers) which deflect cracks; residual stresses 

at second phases which affect crack propagation; micro cracking leading to crack 
branching and deflection; and elastic mismatches between phases leading to induced 

stresses and crack deflection. The concept of "a process zone" can be applied to the 

vicinity of a crack tip where such processes occur. Removing energy from the advancing 

crack depends on the volume fi-action of transformable particles, fibres and number of 

micro crack nuclei. For fibre reinforced ceramics, toughness also relies on the level of 
fibre bonding, the spacing of critical flaws on fibres, fibre bridging and pull out length, 

and features of ductile fillers in the overall composites. 

A very effective technique for dissipating energy during fracture of a ceramic composite is 

through whisker or fibre pullout. Extracting a fibre from a matrix in a composite against 
frictional stresses, can absorb large amounts of energy, since quite large areas are 
involved (i. e. the fibre lateral area). However, the manufacturing methods are very 

complicated and extremely expensive (high temperature sintering) for these advanced 

ceramic composites. T'he large amount of energy consumption by ceramics such as A1203 
is illustrated in Fig. 2.2. 

In comparison, liquid silicate ceramics can be thermally and chemically cured/hardened at 
relatively low temperatures, and produce reasonable mechanical properties with low 
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energy consumption and this results in a low cost. The composites formed with low cost 
glass fibre or carbon fibre have presented all the features of brittle ceramic matrix 
composites. 

2.3 Ceramic composites used for fire protection and heat insulation 

Ceramic composites have been widely used in fire protection and heat insulation in 

aerospace industry (Banas, 1996) since the early 60's. The most complicated application 
has been the space shuttle thermal protection system. Although some other polymer 
composites such as phenolic composites have been used in the orbiter's rockets, these 

were not economical for the development of NASA's space shuttle orbiters since the 

polymer insulation layer would be burned off during re-entry. The temperature when the 

space shuttle encountered re-entry was as high as 1260 'C. 

The raw materials for reusable insulation tiles were mainly composed of 99% pure silica 
fibre derived from high quality sand. They were light weight with a very low coefficient 
of thermal expansion, and a high temperature stability. They were selected for making a 
small block of tile which could be heated to as high as 2268 'C, as shown in Fig. 2.3. 
These surface layers for the space shuttle have to be made through extremely complicated 
manufacturing processes. 

The two most famous insulation systems used in the space shuttle were LI-900ALI-1200 

and FRCI-12 containing mainly silica fibre and SiC particles or fibres (Fig. 2.3 - 2.4). 
The manufacturing processes started with making a billet from a slurry; followed by 

removal of entrapped air bubbles by vibration. The billet was compressed to the final cast 
size. After the billets were dried, the peak sintering temperature was 1327 'C, which 
maintained the silica in an amorphous state. 

That was a very expensive and very complicated manufacturing process. For the space 
shuttle the cost of these materials were acceptable, but for normal civil and industrial 

applications, they are far too expensive both in terms of the raw materials and the quality 
control required. 

Therefore, for normal industrial and civil applications, an affordable ceramic based 
insulation material is required which can provide a certain level of ductility. From an 
initial investigation, silicate moulding compounds could fulfil these tasks and involve a 

CDMC 



Chapter 2 Literature review 

lower cost manufacturing process with relatively good insulation properties and desirable 

mechanical properties. 

2.4 Manufacture of chopped fibre reinforced DMC 

Chopped fibre composites are widely used for making many flat and irregular or 
complicated shapes which are difficult to produce from continuous fibre composites due 
to their poor flowability. Although open and closed processes such as DMC are less 

efficient in use of fibres, they have higher output rates and lower costs than continuous 
fibre processes. The chopped fibre composites can also be produced with few surface 
flaws, and with three-dimensional orientation reinforcement as shown schematically in 
Fig. 2.5. With a 3-D fibre orientation, the mechanical properties of composites in any 
direction are proportional to the amount of fibre by volume oriented in that direction. As 
fibre orientation becomes more random, the mechanical properties in any one direction 
become lower. 

Polymer DMC is a mixture of a chopped fibre (glass/carbon , etc. ) and resin (UP 

resin/phenolics/epoxy, etc. ) with additives and a large quantity of fillers, in the form of 
dough, supplied in bulk form or as an extruded rope for compression (as shown in Fig. 
2.6), transfer or injection moulding. Manufacturing of the moulding compound begins 

with mixing of a fibre-free paste. Batch mixers are ordinarily used for this operation to 

mix a large amount of solid ingredients which are difficult to compound. A high-speed 

turbine mixer with a saw tooth disc blade is frequently used to make the paste itself as 
shown in Fig. 2.7. The thickening agents and catalysts are often added near the end of 
the mixing to reduce their extent of reaction. Afterwards, the paste is transferred to a 
double arm or planetary mixer and chopped glass roving. About 6- 25 nim in length and 
20 to 30 % fibre in volume, are added into the compound. For industrial production, 
polymer DMC is manufactured by feeding the paste premix into a Z-blade mixer, where 
chopped glass is distributed. The resulting 'dough' is either extruded in a sausage like 

shape, or formed into large lumps, and then packed in diffusion tight foil. 

The DMC manufacturing route was used as a possible production method for the ceramic 
moulding composites. In the initial research of this project, it is shown that this process 
and moulding technique are ideal for manufacturing and moulding processes of chopped 
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fibre/ceramic moulding composites, providing some necessary modification is introduced 
based on the features of ceramic matrices. 

The cemmic materials have to be changed in the following ways in order to improve their 
engineering reliability (Kelly and Macmillan, 1986). Firstly, by decreasing the sensitivity 
to flaws; secondly by increase reliability and to realise the potential strength of ceramics. 
It was considered that one of the ways to realise these would be applying or adding 
reinforcement to form a second or third phase in a composite structure. 

The general concept of this research is to combine low cost and low temperature ceramic 
compounds (part I) with the DMC manufacturing method (part II) to produce products 
with optimal mechanical and thermal properties. For mechanical properties, the aim is to 
reach the properties of phenolic/polyester DMC listed in Table 2.1. For the thermal 
properties, it is to retain the properties of matrix systems of ceramic silicates, but with 
better thermal shock resistance. 

2.5 Silicate based composites 

Silicate based primitive composites have been manufactured for hundreds of years. The 
Chinese and Egyptians had used natural fibre or fabrics such as the crop fibres mixed 
with metallic silicates or clay to make their houses and wells as early as 8,000 BC. 
Particularly, the Chinese used silicate clays combined with Ca(OH)2 'CaO and sand to 
build the bases or foundations with stones, bricks for the great wells, roads, and 
buildings over several thousand years. 

In modem industries, silicate based composites have been widely used in building 

construction and decorative panels, while their main reinforcements once were asbestos 
fibres and other mineral fibres. Since health regulations world-wide banned the use of 
asbestos, people have tried many alternatives to replace asbestos and other harniffil 

mineral fibres for composites. 

Although the fire performance of metallic silicates has been known for many years, it was 
only recently that they have started to be used in the fire resistant materials arena, since 
they have always been brittle and fragile. It was the development of composite research 
and the wide range of applications of polymer composites which are so weak when facing 
fire, that promoted the renewed interest in these materials. Also public concern and the 
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potential for the massive loss of human life in fire disasters, has promoted a new impetus 
in the development of new fire resistance materials. 

2.5.1 Silicate matrix composites in general 

Silicates can be found in the form of liquids, powders and glasses. They also exist in 

fibrous structures and in some memllic silicates, which generate different forms of 

composites. Accordingly silicates can be matrix or reinforcement in their composites 
according to the form of silicates and the manufacturing processes. 

Low temperature hardening processes using liquid silicates as binder, were reported in 

later 80' and early 90' (Mackenzie, 1991). With blast furnace slag powder as a filler, the 

silicate matrix was reinforced with glass or polymeric fibres. Final curing temperatures 

can be below 100 T after humid atmosphere treatment. The process was so called wet 

curing. Room temperature setting has used Na-silicates and mineral materials with acidic 

gas (COA02) to help to develop a full strength. 

There have been many silicate/glass based composites systems reinforced with mineral 
fibres developed during 80's and 90's in UK, USA, Japan, Canada, New Zealand and 

other countries. Some of them used liquid silicates as a binder to bond chrysotile asbestos 
into a robust, dimensionally-stable lightweight ceramic materials (JP05097495A2,1994; 

Mackenzie, 1994; Tredway, Musson, Chen 1996). The method was to fuse liquid 

metallic silicates and ground waste glass to form a material without fibre emissions and 

with enhanced mechanical properties. These materials formulations are listed in the Table 

2.2. 

The benefit of this was that the fibre bundles were stabilised through fusion with a glassy 

matrix, significantly reducing the respirable fibre concentration. The SEM analysis of this 

system proved that any resulting dust was free of fibres. The valuable thermal treatment 

could also convert the chrysotile into crystalline forsterite, which should destroy its cell 
toxicity. The manufacturing processes are displayed in Fig. 2.8 developed in USA/Japan 

and Fig. 2.9 developed in UK. 

In early 90's, a series of silicate composites were designed as fire proof structural 
laminate with specific mechanical properties. One of these systems was CS3000-FR/HR 
(Claymore. Systems data sheet, 1994,1996) rated as non combustible in accordance with 
British Standard 476 Part 4. Further tests proved that the materials after exposure to 
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temperatures up to 1000 'C showed minimum deterioration, and produced negligible 
levels of smoke and no toxic emissions. 

Since solid silicates as a general mineral composition, possess good thermal performance, 
their composites are widely used in coating industries for improving fire resistance. As an 

example, a fire resistant inorganic coating composite was made by a Canadian firm for 

high speed aeroplanes (US4888057). It provided an intumesecent feature when subjected 
to high temperature and fire to form a continuous heat insulation structure which was 

retained for prolonged periods at temperatures up to 1000 'C. For instance, a coating 

system with multiple layers on an Al panel with the thickness of coating from 1.9 to 3 mm. 

was heated up to more than 1000 'C, the time for the back surface to reach 300 T was > 
30 minutes. When it was heated for 30 minutes up to 900 'C, the coating layer swelled to 

about 4 to 5 mm. 

A coloured fire resistant composite was developed by a group of Japanese researchers 
(JP-5-16305 1/A2-930629) in 90's. Panels were manufactured by a moulding process and 

curing at elevated temperatures generated enough strength for building materials. The 

process is shown in Fig. 2.10. 

Shrinkage has been always a problem for the manufacture of metallic silicate composites. 
During sintering and moulding the density of the materials increases tremendously. 
Materials shrinkage makes it difficult to introduce dimensional stability into the 

components. Because of this, the surface qualities of the moulded or sintered parts can 

not be controlled. A Japanese research group developed a dimensional stable material 
based on a silicate composite with the blast furnace slag as its main filler (Huda 1994). 

This water proof composite material has achieved following properties: 

Bending strength 29.4 MIN 
Young's modulus 19.6-29.4 GPa 

The use of fine aggregates could also improve workability during moulding of kneaded 

materials and reduce the shrinkage caused by drying of the hardened materials. Other 

expandable inorganic materials in cement applications have been reported such as the use 

of pre-hydrated high alumna content cement as an expansion additive to compensate for 

shrinkage compensating (Fu, Xie, Gu, Beaudoin, 1994). 
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In the above discussion, silicates were used as a binding agent. In later research the 

silicates were used for improving the strength of greenware which was in the form of a 
liquid meta-silicate solution for ensuring compatibility with ceramics or concrete 
(Yanakiev, 1990). The silicates could be used to mix with original composition to 

produce better and stronger greenware. With acid treatment, articles with a 3-dimensional 

porous structure in their framework can be obtained after sintering. An other route for 

making porous structures was using SiN4 mixed with Na2O*S'02-H20, A120ý and Y203 

as sintering aids (JP 63256575). The final sintering resulted in a honeycomb-shaped 

ceramic article having micro-pores on the cell wall (JP 63256578). The process is shown 
in Fig. 2.11-2.12. 

Silicates are often hardened by means of esters, which hydrolyse and subsequently gel the 

silicates (Nicholas, 1972; Roberts, 1972). These were used to stabilise soils in 

underground construction projects (O'Connor, Krizek, and Atrmotzidis, 1978) and used 
extensively in spiral-tube winding, fibre drums, and sailing, laminating metal foil to paper 
and in corrugated boxes used in manufacturing of refractory and acid-resistant mortars 
and cements used in palletising, granulating and as a carrier for water based coating 
(Classer and Lee, 1971). 

2.5.2 General features of silicates for composite processing 

Viscosity characteristics of liquid silicates are very important since they reflect the solid 

content, mole ratioof S'02: Na2O, particle sizes, level of gel and sol formation, etc. For 

example, the silicate solutions in a mole ratio(S'02: NaýO) of 2.65 can be manufactured in 

an autoclave at a temperature of 160 IC by dissolving fine ground sand in a NaOH 

solution. The solid level of the solutions sold commercially is normally between 25 - 
40%(wt. ). Figure 2.13 shows, how the viscosity of silicate solutions increased with an 
increase in the solid level. Meanwhile, the higher the ratioof S'02: Na2O, the greater the 

rate of viscosity increase with the solid content. 

Silicate powders are made from liquid silicate solutions. The ratio of the SiO,: Na2O in 

powders are determined by the ratio in precursor liquids. In a high ratio SiO2: Na2O 

solution, evaporating of water, increases the viscosity to a point where solid forms. The 

rate of evaporation of a solution containing soluble silicates and the rate of solid silicates 
dissolving into water are a function of particle size, S'02: Na2O ratio and water content. In 
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Table 2.3, powdered soluble silicate can be made in a wide range of SiO,: Na2O ratios and CD 
solution rates for diverse applications. 

As discussed above, the ratio of S'02: Na2O and the content of silicates in water solution 

give different viscosity for the solution. Therefore, the solid silicates have been used to 

adjust viscosity in liquid solution and binder for ceramic slurries. Many of the metallic 

silicates in solid or liquid systems such as K-silicates, Na-silicates, Al-silicates and MgCl2 

etc. are developed for these applications (Shchetanov, Mizyurina, Gribkov, Shalin, 

Chanov, 1996). A Chinese paper reported on the use of silicates as thickening, diluting 

agents and bonding agents for analysis of black talc slurry (Wu, 1994). It was found that 
by adding metallic-silicates with different ratio of S'02 and Na20, the whole system was 

thickened or diluted as desired. 

The fibre/silicate composites are classified as the ceramic composites (Bentur and 
Mindess, 1990; Balaguru, Shah, 1992). Since we are going to use the process of DMC 
from the polymeric composite industry to produce fibrelceramic: moulding compounds, 
the materials we investigated and produced have been named as ceramic dough moulding 
compounds (CDMQ. 

2.6 Background to the matrix system-Silicates 

What are silicates? Silicates (M., -mSiOynH20) are a vast family in inorganic chemistry and 

are derived from silicon (Si). Silica (S'02) and silicates have been intimately connected 
with the evolution of mankind from prehistoric times: the names derived from the Latin 

Silex, gen. silicis, flint, and serve as a reminder of the simple tools developed in 

Palaeolithic times (-500,000 years ago) (Greenwood, Eamshaw, 1984). The name of the 

element, silicon, was proposed by Thomas Thomson in 1831, the ending on being 
intended to stress the analogy with carbon and boron. 

Naturally occurring silicate minerals makes up more than 90% of the earth's crust. 
Although tens of thousands types of metallic-silicates chemically exist, they are only a 
small part of the natural resources on the surface of the earth. These minerals are slightly 
soluble and are in chemical. equilibrium with the mineral components (Grayson, 1985). 
Because of this slight solubility, concentrations of dissolved silica usually are 10 - 100 
PPM in mineral water. The soluble silicates have the general formula (C2-1): 
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M20*MS'02 C2-1 

M- an alkali metal, m, n are the number of moles Of Si02 and H20 relative to one mole 
Of M20, the m has been called the ratio of the silicate. Sodium silicate is the most soluble 

common silicate, and the commercial form of this silicate generally is a glass dissolved in 

water to form a viscous alkaline solution (m = 0.5 - 4.0), the commercial water glass has 

an m value of 3.3. 

Although the knowledge of soluble glass could be traced to antiquity, soluble silicates 
started their industrial development in the early 19th century in Germany and were first 

produced in North America during the Civil War, when they were in laundry soaps as a 
replacement for resin. 

The production method was that sodium carbonate (soda ash) and sand were fused in an 
open hearth furnace to produce a glass which was then cooled, crushed and dissolved, 

and this formed the basis of modem manufacturing methods. Commercial availability of 
those glass solutions gradually led to the development of adhesives and binders after the 
turn of the century. 

Apart from additives in washing powder and detergents, soluble silicates developed an 
important market after World War II in manufacturing synthetic pigments and fillers, 

silica gels and sols, synthetic clays and zeolites. It was well known that soluble silicates 
have miscellaneous usage's in cements, coatings, bleaches, water treatment, and soil 
stabilisation. Tlese are based on their capability to form gels/sols and to react with 

multivalent metal ions or oxide surfaces in solution. After World War H, the main market 
for liquid silicates was adhesives and surface active agent. 

2.6.1 Structure of soluble silicates 

Silicates are composed of silicon and oxygen. The bulk of soils, rocks, clays, and sand 
come under the mineral silicate classification. The basic building block of a metallic 

silicate is SiO44-, a tetrahedron structure giving various arrangements for silicate ceramics 
(Fig 2.14) (Callister, 1993). Table 2.4 shows some of the structures in different silicates 
(Engelhardt and co-workes, 1975). 
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Synthetic silicates and silica are made up of oligomers of the basic building block of 
SiO44- with tetrahedral structure. Silicate polygons can construct more complex structures 

according to Pauling's rules. The Qs structure notation refers to the connectivity of 
silicons (Von, Engelhardt and co-worker§ 1975). The superscript represents the number 
of nearest-neighbour silicon atoms. 

2.6.2 Silicates in solutions 

The distribution of silicate species in solution has long been of interest because of the 

wide variations in the typical properties. Studies in 1920's led to a dual description of 
silicate components (Harman, 1928). Prior to 1928, sodium silicate solutions were 
thought to be composed of products of hydrolysis, colloidal silicic acid, hydroxide ions, 

and sodium ions. However, through the analysis of the properties of solutions with 
various ratios Of Si02: Na2O, the silicate solutions also contain crystalloidal silica 
(Nauman and Debye, 1928). 

Later research in light scattering showed that stable silicate solutions did not contain very 
large particles. In the 1970's, other indirect methods of studying silicates species in 

solution indicated that these are a complex mixture of silicate anions with varying degrees 

of polymerisation in a dynamic equilibrium (Engelhardt and Co-workes, 1975). Recently, 

the NMR spectra for a range of silicate ratios were measured, and the various silicon 
centres could be identified and relative concentrations could be estimated. 

The following representations of the polymeric species in silicate solutions have been 

proposed, i. e., for H2x S'YO(2y+x) or its ionised forms: number of non bridging oxygen = 

2x; number of bridging oxygen atoms = 2y + x. The most common species in 

Na20*SiO2-H20 family are shown in Fig. 2.15. A general formulation could be 

presented as: 

Na20*S'04-xH20 C2-2 

x=n-1, contain silicate monomer; x=4, sodium meta-silicate pentahydrate, (CN No. 
10213-79-3/PQ Co. ); x=5, sodium meta-silicate hexahydrate ( CN No. 35064-64-3/PQ 
Co. ); x=7, sodium meta-silicate octahydrate (CN No. 27121-04-6/PQ Co. ); x=8, 
sodium silicate meta-silicate nonahydrate. 
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Silicate glasses (Zhdanor, Stekla, 1978), that contain SiO4 tetrahedra are similar to other 
forms of silica, crystalline silicates and glasses (Crosfield Chemicals, 1994-1995). The 

tetrahedra may be monomers or polymerised with up to four other tetrahedra sharing 
oxygen atoms to form Si-O-Si bridges (siloxane bond). 

Soluble silicate solutions contain mixtures of silicate anions, ranging from monomer 
SiO44- and dimer Si205 2- through to high molecular weight polymers containing a large 

number of Si atoms. On evaporation, these polymers coalesce causing steep rises in 

solution viscosity which is why more siliceous materials are often used as adhesives. 

It is suggested that the principal, factors in commercial silicate glass dissolution are 
temperature, glass composition and surface area. The dissolution of silicate glass 
involves a two-step mechanism (El-Shamy and Lewins, 1972): 

Ion exchange a SiONa + H20 <=>=- SiOH + Na+ + OH- C2-3 

Network breakdown: -= SiOSi -= +OH- 4-*-= SIO- + HOSi -= C2-4 

The solubility trend is K+ > Na+ > Li+. The presence of multivalent metal ion impurities, 

e. g. A13+, Ca2+, or Fe3+, in the alkali silicates reduces the solubility of the glass 
(Douglas, 1972). 

2.7 Polymerisation of silicates 

Polymerisation of silicates ha s- been of great interest to technologists for a wide range of 
applications. The complex silanol'polymerisation process may be simplified as C2-5: 

+ K, 4=Si i=+ OT SiOH+ -= SiO-H - Os- H2 

C2-5 

This empirical representation becomes less valid at pH>10. Other factors influencing 

colloidal systems are ionic strength, dielectric constant, and temperatures. Larger particles 
grow at the expanse of smaller particles, especially at higher pH value, the tendency of 
smaller particles to condense at the surface of the large particles is more (Schwertz and 
Muller, 1958). 

CDMC 18 



Chapter 2 Literature review 

Low pH values and higher ionic strengths lead to the growth of smaller particles. If the 4ý 
concentration of SiO2 is sufficiently high, inter particle aggregation and ultimately 
network formation will occur, i. e., gelation, yielding a continuous structure throughout 
the medium (Balyakov and Co-workers, 1974). 

2.7.1 Chemical mechanisms of silicate condensation 

The mechanism of silicate polymerisation can be divided into 3 stages, as shown in Fig. 
2.16. They start with monomers and then grow into particles, if the condition is right they 

can link up together and form chain and networks. The reaction involves the condensation 
of silinol groups (C2-6) and results in an increase in molecular weight of silica (Carmen, 
1940): 

-SiOH +HOSi- = -SiOSi- + H20 C2-6 

The formation then growth of spherical particles is one kind of polymerisation. 
Aggregation of particles to form viscous sols and gels is another kind of polymerisation 
which may occur and lead to form chains or networks under other conditions. Succeeding 

steps in polymerisation from monomer to large particles and gels have been represented 
schematically by Ilea (1974) as in Figure 2.17. An intermediate covalent stage and even 
more extensive complexes involving 6 co-ordinated silicon were postulated in the pH 
between 2- 10 as shown in Fig. 2.18 (Weyl, 1951). 

When polymerisation takes place above pH 7, the ionisation of polymer species is much 
faster so that the monomer polymerises and decreases in concentration vary rapidly at 25 
IC. Meanwhile, the particles grow rapidly to a final size that depends mainly on 
temperature. The higher the temperature, the bigger the particle size (Ilea, 1955). 

It was observed that at pH 8 the polymerisation of silicic acid has an "induction period" 
during which there is little or no polymerisation of monomer. And the "reactive silica" 
was mainly Si(OH)4 monomer (Baumann, 1959). At this pH stage, the polymerisation of 

monomer involves a reaction between Si(OH)4 and -= Sio- ions. 
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2.7.2 The self-condensation 

Self condensation of monomer catalysed by OH- ion involves the formation of oligomers 
and is commonly written as: 

2S'(OH)4 OH- ý(OH)3SiOSi(OH)3+H20 C2-7 

The greater the member of siloxane linkages and the fewer OH- groups on a silicon atom, 
the stronger the acidity (C2-8) (Ilea, 1984): 

I 

si" Si(OH)4 <- 
Siusi(OH)3 

< 
sio> 

Si(OH)2 < sio) SiOH 

sio) 
C2-8 

Polymerisation also involves intermediate ionisation to a SiO- or =- Si' to below or 

above pH 2. The key point is that condensation involves the reaction of an -= SiO- ion 

with the non-ionised silanol group: 

= Si- + HOSI =--->= SiOSi = +OH- C2-9 

When monomer polymerises in alkaline solution in pH range 8-10 colloidal silica particles 
form quickly and grow spontaneously (Ilea, 1984). 

2.8 Physical characteristics of gel and powder 

Silica gel and powders consist of silica particles, ranging from 1 to 100 nm. in diameter. 

o Silica gel - 

A coherent, rigid three dimensional network of continuous particles of colloidal silica can 
be formed by polymerisation of silicic acid and through aggregation of colloidal silica. 
Most common four types of Gels are: 
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9 Alcogel - pores filled with alcohol; 
" Aqua gel - pores filled with water; 
" Xerogel - liquid medium has been removed, structure compressed; 
" Aerogel -A type of Xerogel, liquid removed, structure kept. 

11 Silica powder - 

Silica powder consists of small granules of silica gel or sub micron particles that are 
linked together in extremely weak networks. There are about 7 types of silica powders: 
pulverised gels, spheroidal gels, precipitated silica, aerosols or pyrogenic silica, 
organophilic silica, aluminosilicate anions (Buzagh and Von, 1950). 

The average particle diameters can be calculated as dn, the number - average diameter and 
d., the surface - average diameter: 

i=k 

lnidi' 
d, = '=' i-k 

n, d, 2 
E2-1 

Where ni is the number of particles in its range of sizes, the mean diameter of each being 
di, and k is the number of size range. 

Another important property is the surface area of the gel or powder. The BET (Brunauer, 
Emmett, and Teller) method of calculation specific surface area from an absorption 
isotherm used nitrogen as the absorbed at 196 IC. BET equation (Burnaner, 1945): 

p=1+ (c - 1)p 

V. (po - P) V. c V. Cpo E2-2 

va is the moles of gas absorbed per gram of absorbent when the gas pressure is p, I)m is 

the mono-layer capacity of the surface, p. is the saturated gas pressure, c is constant. 
The area determined by the equation E2-3: 

SBET =v a,. N x 10-20 
E2-3 
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a. is the molecular cross-sectional area of one gas molecule in square angstroms, N=6x 
1023, a. = 16.3 A for oxide surface. Fully hydroxIated powder was dehydrated and the 

example was showed in Table 2.5 based on the BET equation. 

From these data, with the elevating temperature, the surface area was decreased, means 
the particle size was increased and the SiOH was consumed from 10 to 2. 

e Porosity of gel and powder 

They are characterised by specific surface area m2/g, specific pore volume (up, mi/g), 
average pore diameter dp, pore size distribution AvP / AdP = f(jp) and degree to which 

entrance to larger pores is restricted by smaller pores ( "bottle-necks" or "ink-bottle" 

pores) (Linsen and Heuvel, 1967). Because absorption characteristics change with pore 
size, Dubinin (Dubinin, 1968) classified porosity in the terms of micropores, mesopores, 
and macropores. 

Diameter (A) Specific surface area (m2/g) 
NEcropores 10-28 7500 
Mesopores; 30-2000 500-10 
Macropores 2000-4000 <10 

2.8.1 Particle size and packing 

All silica gel and precipitates tend to be compressed by the shrinkage forces of the surface 
tension of water as it dries out of pores. Unless special precautions are taken to strengthen 
the structure and reduce the surface-tension forces, the wet precipitate or gel is strongly 
compacted to about the same co-ordination number 6. 

Loss of surface area Of Si02 particles by particle packing can be achieved by pressure 
such as 1500 MPa. The approximate relation between pressure and the co-ordination 
number of silica particles was listed in Table 2.6. Depending on the pore radius, the silica 
gels can be subdivided into four groups (Coelingh, 1939; Brunauer, 1954) listed in Table 
2.7. 
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There are some methods to measure the pore volume: liquid nitrogen pressure approaches 
p/p. =1 (Kiselev's method) (Everett and Stone, 1958); flow method by a nitrogen-helium 
mixture containing 96.7% nitrogen (Lard and Brown, 1972); the oil absorption test, long 

used to evaluate carbon blacks, pigments and fillers, can give as indication or pore 
volume which used a non-volatile liquid that steadily penetrates the pores in silica. The 

amount of "oil" absorbed by a silica powder is an indirect measure of porosity. 

2.8.2 Aggregate strength: inter-particle bonding 

The conversion of a spherical sol particle to an uniform gel is through the formation of a 
Si-O-Si bond or an inter-particle bonding as shown in Figure 2.19 (Suger and Guba, 
1954). When particles collide, there are neutral M SiOH groups as well as M SiO- ionised 

groups on the surface of the particles which condense to form the Si-O-Si linkages by the 
same mechanism involved in the polymerisation of low molecular weight species. The 

presence of the soluble silica or monomer then plays a role of further cementing the 

particles together. From the bond formation of particles showed in Fig. 2.20, the particles 
can link together into chains then develop into rods or fibre structures or a solid structure 
or a fibrous network (Iler, 1984). 

An important step in the formation of a rigid gel is the strengthening of the inter particle 
bonds. When two silica particles unite in water, they grow together because the solubility 
of silica in the crevice at the point of contact is less than that of the silica over the surface 
of the particle. 

The formation of inter particle "necks" can occur by 2 processes: the solution / re- 
deposition process and the deposition of additional silica from supersaturated solution. 
The mechanical strength of coalescence of particles in gel structures having same particle 
size and a packing arrangement can be measured from equation developed by Kaiser 
(Meissner, Michaels, and Kaiser, 1964). It was indicated that the higher the porosity, the 
lower the related strength (Table 2.8). 

cr,, = PD-2= Ko exp(7.2 0) E2-4 

a, is the crushing strength; P is crushing load; D is diameter of agglomerate; 0 is 
fraction of total volume occupied by shares; K is a constant which is a function of the 
spherical particles diameter and the bond strength between two particles. 
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Gel strength and hardness-were -real- concern when in 1950's. Many procedures of 
increasing mechanical strength, reducing shrinkage, with higher porosity had been 
devised for soluble silicates (Vail, 1952). Slow drying was essential in order to keep the 
gel lumps from shattering because of greater shrinkage of the exterior portions. If water in 

the gel is replaced with an organic liquid having a lower surface tension, the gel shrinks 
less during drying, leaving larger pores. Another approach is to use a compound which 
releases acid slowly then n-dxed with concentrated sodium silicate solution reacted and set 
in a day to an extremely hard gel. 

The effects of cations to accelerate gelling increased in order Li+, Na+, an K+ and of 
anions in the order N03-, Cl-, Br-, and I-. For some un-explained reason I- had about 
five fold the effect of N03- (Mookejee and Niygi, 1975). 

2.9 Polymerisation of catalysed silicates 

The most industrialised polymerisation of silicates is catalysed by substances such as acid 
gases and liquid acids, metallic minerals, salts, even organic or polymers. 

2.9.1 Catalysis by gases and liquid acid 

o Acidic gas 

Silicates can be hardened by acidic gases such asC02 andSo2at different temperatures. 
The silicate/C02 system is very popular for foundry industry which offers many 
advantages. As a bonding agent, liquid silicate mixed with sand can be hardened in situ 
immediately after compacting, exposing the core or mould to carbon dioxide (Crosfield 
Chemical, 1994). 

The chemical mechanism of the silicate/C02 system was that, the surface film of the M- 

silicate coating reacts with carbon dioxide, forming a hydrated silica gel membrane which 
is a semipermeable type of structure. Secondly, water is lost from the underlying sodium 
silicate, brought about by the flow of the carbon dioxide gas stream. It is considered to set 
the silicate by two possible processes (Nichols, 1972, Ruskin and Cihlar, 1987): 

a. Physical dehydration of the silicate solution by the drying action of the C02- 
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b. Neutralisation of the silicates and gel formation by chemical reaction with the C02- 

As the drying temperature increases from 60 OC to 110 'C, NaC03 is formed initially and 
then converted to NaHC03 on ftirther processing. Generally, shorter gassing time gives 
lower initial strengths which considerably increase on standing. With longer gassing 
period, higher initial strength tends to be obtained, but the strength build-up during 

storage is reduced. C02 gas was proved the most convenient and efficient gas to harden 

the silicates (Mackenzie and Ranchod, 1991). Samples gassed with C02 contain 
bicarbonate and carbonate species which decomposed on heating in at least four stages up 
to 1000 T. IR spectroscopy suggests that the more thermally stable species may be 

siEcate carbonates. 

o Silicate/SO, system 

The silicate/C02 and silicates/S02 systems work well both in normal and high 

temperatures (Mackenzie, 1989). The method is to bubble S02 into a sodium silicate 

solution in order to produce solidification. X-ray diffraction indicate the presence of 

crystalline Na2S03-7H20, and a smaller amount of Na2S205 which is on an amorphous 

component. 

e Liquid acid as catalyst 

The development of liquid setting agents is concentrated in poly-alcohol esters and 
alMine carbonate esters. Poly-alcohol esters are the acetates of glycerol and ethylene 
glycol. This setting agent are usually 8% - 14% based on the weight of Na-silicate. In 

common with most chemical reactions the setting rate of the liquid silicate/ester system is 

temperature dependent - the lower the temperature of the system the slower the rate of set. 

2.9.2 Solidified by metallic acids 

Metallic acids are powdered setting agents such as heavy metal silicides, when mixed with 
liquid silicates, react to form a hard mass. The reaction mechanism is complicated and the 
relationships among these metallic solids and liquid silicates remains unknown. 
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Calcium silicates 

This occurs in a variety of chemical forms as by-products of blast. furnace slag or by 

products of magnesium and ferrochrome in form of gamma-dicalcium. silicates which are 

extremely reactive when freshly prepared. The activity can be lost with the time by the 

action of air and moisture. 

* Portland Cement: 

This contains a high proportion of calcium silicates and other metallic minerals which are 

extremely efficient as setting agents. Table 2.9 represents the chemical constituents for 

various types of Portland cement (Richard and Smith, 1985). When it is ground to a 

powder and mixed with water, it forms a stone like mass which results from a series of 

chemical reactions with the crystalline constituents hydrate, forming a materials of high 

hardness that is extremely resistant to compressive load. 

During hydration, cement forms a non crystalline paste that has good adhesive properties. 
After its setting, it consists of submicron-sized crystals in a gel-like materials that 

possesses a high surface area value. The composition of the four main compounds in 

Portland cement are (Lee, 1970; Bushby, 1991): 

Tri-calcium silicate 

Di-calcium silicate 

Tri-calcium Aluminate 

Tetra-calcium aluminoferrite 

3CaO'SiO2 (C3S) C2-10 

2Ca-SiO2 (C2S) C2-11 

3CaO-AI203 (C4A) C2-12 

4CaO-AI203-Fe2O3 (C3AF) C2-13 

Hydration of Portland cement contributes to forming the cement paste and developing the 
final rigid mass. C3S is the most dominating component in the hydration process (C2-14): 

2(3CaO*SiO2) + 7H20.. -- 3CaO*SiO2.4H20 + 3Ca(OH)2 C2-14 
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3CaO-2SiO2-3H20 is tobermorite gel. After mixing the C3S and water, lime and silica 
ions enter into solution, and it begins to form at the surface of the C3S crystals and 

proceeds to cover them. As ions diffuse through this layer, nucleation and growth of the 

portandite and tobermorite gel crystals continue. Similar reactions happen between in 
C2S and water: 

2(2CaO*SiO2) + 5H20 = 3CaO-2SiO2.4H20 + Ca(OH)2 C2-15 

e By aluminium phosphates 

Hardeners for soluble silicates are produced by a drying process of a salt containing 

phosphoric acid A'2(PO4)3. A condensation reactionof P205 and A1203 lead to different 

hardeners depending on the processing temperature and theP205/A1203 ratio. In an 

alkaline environment the hardeners are dissolved and the polymerisation of -0-Si-O-Si- 
reaction would occur. 

2.10 Chemical Activity 

Soluble silicate and polymer-metal ions interact in solution. Since the reaction happens 

among metal ions in solution and polymeric silicate species, it has been shown that silica- 
gel surfaces form complexes with multivalent metal ions that indicate a correlation 
between the liquid properties of the surface OH groups on silica gel and metal-ion 
hydrolysis (Zhdanor, 1978). For CU2+, Fe3+, Cd2+ and Pb2+ their solution activity can 
be increased. The existence of Ca2+ and Mg2+ decreases the solution activity. 

2.10.1 The nature of silica surface 

There are three types of silica surface (Barby, 1926). A fully hydroxylated surface 
terminated with silanol (SiOH) groups. All silica dried from water at less than 150 T are 
of this type. Secondly, a siloxane surface consisting mainly of oxygen atoms, each 
bonded to adjacent silicon atoms. Pyrogenic silica condensed form the vapour state are of 
this type. Also, hydoxylated silica which have been dehydrated at around 1000 'C 
develop a siloxane surface by removal of water forming adjacent silanol groups. And 
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thirdly, an organic surface formed by chemical or physical attachment of organic 
molecules or radicals. 

2.10.2 Reaction with phosphoric, boric acids and sulphuric acids 

The reaction of sUica with phosphoric acid is a condensation reaction with elimination 
of water. Silicon phosphate has long been known as a water soluble material. 

The reaction of boric acid with silica appears to parallel those of phosphoric acid, on 
dehydration at high temperature, Si-O-B bonds are formed in the resulting mixed- 
oxide glass. The Si-O-P and Si-O-B bonds are hydrolysed in aqueous solution 
(Lorentz et al, 1962). 

Silicon dihydrogen sulphate [SiO(HS04)] was obtained by dehydrating "dihydroxy" 

silicon dihydrogen sulphate [(HO)2Si(HS04)], With concentrated sulphuric acid 
(Bount, 1976). 

2.10.3 Reaction with metallic materials 

9 Iron and uranium 

Monomeric silica does not react with most metal ions in water at low pH where Si(OH)4 

existed. For reaction to occur hydrolysis to a basic metal ion must first take place (Porter 

and Weber, 1971): 

H20 + Fe3+ = Fe2+OH + H+ C2-16 

Second step: 

(-SiOH)m + Fe3+ = (-SiOH)m-n(-SiO)nFe3-n + nH+ C2-17 

Very few metal ions form basic ions at the pH of 2 (iron and uranium are the only ones), 
where monomeric Si(OH)4 is most stable, the reaction between silica and urang] ion as 
follows (Weber, Jr., and Sturnin, 1965): 
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U02 + Si(OH)4 ý U02Si(OH)3+ + H+ C2-18 

o Reaction with chromium 

Hexayalent chromium as H2CrO4 appears to form a complex with Si(OH)4 (Iler, 1952), 
The H2CrO4 dimerised the silica quantitatively and the excess had no further effect: 

O-H --- 0 --- H- 0 

HO- -i--O-t 

11 

r- 0--s 

I 

i-OH 
1 11 1 

U -1i --- 0 --- H-0 
C2-19 

9 Reaction with alurninium 

There is an affinity for the internal reaction between oxides of aluminium. and silicon. 
Aluminium. oxide is far less soluble than silica in water at 25 'C, PH 5-8 (Okura, Goto, 

and Murai, 1952). It is necessary to spend time to allow monomeric silica, Si(OH)4, to 

react with A13+ ion at 25 'C to form colloidal aluminium silicate: 

2 Si(OH)4 +2 A13+ + H20 = A12Si2O5(OH)4 +6 H+ C2-20 

There is a reaction between Si(OH)4 and crystalline AI(OH)3 by which several reaction 
layers Of Si02 are built up, with simultaneous decrease in pH of the suspension. 
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2.11 Manufacturing silicates 

In UK, these silicates are manufactured to be used in wide variety of industries: 

Detergent manufacture 24% 
Paint manufacture 24% 
Catalysts 11% 
Foundry binders 11% 
Cements 7% 

Most of the UK's liquid silicates are produced by Gossage's method from Sibia sand by 

reaction with sodium carbonate to yield a glass: 

Na. Co, + xs'02 >15000C 4Na20 * XS'02 + C02 
C2-21 

x- the mole ratio. 

Crystalline products and their compositions are shown in Fig. 2.21. Highly siliceous 

phases are slow to attain equilibrium structures and compositions, but a few of the 

naturally occurring members (Kenyaite, Maketite, and Kanernite) have attained 

equilibrium over geological time. 

Soluble silicate glasses are manufactured in oil-gas-fired open-hearth regenerative 
furnaces in modem industry. Glass is obtained by reaction of quartz sand and sodium 

carbonate (soda ash) at a temperature of 1200 IC in the molten batch and a manageable 
melt viscosity. Ile reaction rate of quartz with Na2C03 is controlled by silica diffusion. 

As Na2C03 melts and reacts with the sand grains at the slow process of quartz network 
breakdown. The raw materials of sand and soda ash for manufacture of the soluble 
silicate must be of high purity. The impurities observed in 3.3 ratio solution can be shown 
in Table 2.10. 
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2.12 Possible fibre selection 

Literature review 

Since silicate composites have a basic structure similar to both ceramic composites and 
cementitious materials, the glass fibres can be directly adapted from fibre reinforced 
cement and concrete applications. At the same time since dough moulding compound 
reinforced with chopped glass has been well established, we have used the similar 
manufacturing and moulding techniques to make and mould ceramic moulding 
compound. 

One of the major interests for ceramic matrix composites is that the thermal behaviour is 

not dependent on the matrix as for polymer composites, but depends on the reinforcement 
at the temperature range 200 to 800 'C. At higher temperatures, the thermal behaviour 

was both dependent on the composition of the ceramic matrix and reinforcements. 
Therefore, there was always a concern of the thermal behaviour of reinforcements for 

ceramic composites. For example, glass typically starts softening at about 550 to 730 OC, 

it resists to creep only up to about 280 "C. 

Polymeric fibres (e. g. PP&PE, KevlarTM) do not have good thermal properties. Ceramics 

such as alumna (Tm - 2027 "C) show little creep below 830 T, while SiC and Carbon 

fibres were in general highly creep resistance to over 930 T, depending on the detail of 
their microstructures. But they are very expensive to use. 

2.12.1 General fibres 

A wide range of fibres of different mechanical, physical and chemical properties have 
been used for reinforcement of low cost ceramics such as cementitious matrices. The 
individual fibre may be subdivided into two groups: discrete mono-filaments separated 
one from the other, such as steel fibre, and fibre assemblies, usually made up of bundles 

of filaments, each with a diameter of -20 gin or less. 71be bundled structure is typical 

whether it is inorganic or organic such as glass fibre, ceramic fibre and carbon fibre, 
Kevlar fibre, and metallic fibres. 

Continuous reinforcement, in the form of long fibres or fabrics are incorporated in the 
matrix in many ways. For example, the non-crimped fabrics were impregnated by ceramic 
matrix for making CS3000, a fire proof composites panels. Discrete, short fibres, usually 
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less than 50 min long (or 1 inch or half inch long), which are incorporated in the matrix 
by methods such as spraying and mixing as premix. The reinforcing array could be 
further classified according to the dispersion of the fibres in the matrix. In this form the 
distribution of the fibres in the matrix is more uniform, and the chopped fibre tend to 

assume a more random orientation. In DMC, the fibre orientation seemed to be arrayed in 
3 dimension, however, since the influence of the moulding pressure and flatten flow 
during the moulding, the fibre mainly distributed in 2-dimensions. 

The problem that exists with all traditional glass fibres is their chemical resistance to water 
or boiling water and especially, alkaline media. A 10-micron-diameter E-glass filament 

typically loses 0.7-0.9 % of its weight when left in hot water for few days (Yellow Pages: 
Industry overview). To slow erosion, protective moisture-resistant coatings, such as 
silane compounds, are applied during fibre manufacturing. Corrosion-resistant glass, 
known as C-glass or ECR glass, loses much less of its weight when exposed to an acid 
solution than does E-glass. Although C-glass and S-2 glass show good corrosion- 
resistance to sulphuric acid, their resistance to alkaline environment especially to NaOH is 

unknown. 

2.12.2 Alkali resistant glass fibres (AR-glass) 

Glass fibres used in conventional polymer composite industries were borosilicate glass 
fibres (E-Glass) and the soda-lime-sflica glass fibres (A-glass) which used to reinforce 
brittle cement materials. These fibres had very high tensile strengths and relatively high 

elastic modulus. However, since their chemical compositions were not suitable (Table 
2.11) for the cement-based matrix with high alkalinity (pH >1 1.5), the research took the 
two logical developmental paths during past 20 years: 

Developing fibres that are durable in alkaline environment, leading to an alkaline- 
resistant glass (AR-glass) fibres. 
Focused on the development of a less alkali matrix, leading to a development of a 
polymer modified mortar matrix and use of-alkaline special cements. 

There has been intensive research to compare the glass fibre's (E and AR glass) resistance 
to alMinity liquid produced by cements or concrete for the last thirty years by the British 
Building Research Establishment (Majumdar, 1973,1975). It has been proved that at 
room temperature, AR-glass composites have, much better property retention while the 
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properties of E-glass fibre/cement or concrete decreased tremendously. There is no report 
about glass fibre resistance to alkali at elevated temperature being found up to now. 

Alkali-resistant glass fibre with more than 16% Zirconia in composition such as the Cern- 
FIL chemical resistance fibres produced considerably durability of the fibre in an alkaline 
environment. The Zirconia in composition enables AR fibre to resist the very high 

alkalinity produced by the hydration of alkaline resin matrices. 

No investigation has been reported on the interface between glass fibre and ceramic matrix 
under alkaline conditions and the moulding temperature range 100 T- 200 T in liquid 

alkali system. However, one or two researchers have noticed that the interfacial bonding 

and chemistry of coupling agents in polymer matrix composite (e. g. y-APS) are affected 

by pH, or environmental conditions (Jang and Ishida, 1988) when the composites are in 

application. There is no report can be found now on researches in the formation of 
interfaces in ceramic composites under high alkali media while at the temperature higher 

than 100 *C. 
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2.13 Summary 

Literature review 

Mineral silicate related materials have a long history being used as binders by humans for 
more than 5000 years. They have existed on the surface of the earth since the earth cooled 
down to the current temperatures, billions of years ago. Their main chemical core 
structures are the same as -[O-Si-O-Si-]O- . More complex chemical structures were 
produced when the material was at higher temperatures, after mixing with other materials. 

When the metallic-silicate powder or liquid are exposed to different environments such as 
acid or alkali, they would be condensed or polyrnerised into small particles first, then they 
form a sol. If it is in acid or pH <7-8, a gel would be formed and further leads to 
networks. Only in the case of salt presence, the silicates can be gelled with the pH>7-8. 
With the evaporation of moisture or water under the higher temperature, it also provide 
the opportunity to move the sol to gel with the help of salt, but produced large particles 
with less or short chain structures. According to the theory, at low pH, produced small 
particles and formed more strong chain structure; while the at higher pH, produced large 

particles and formed weak or short chain. 

The silicate composites have also been used since pre-historical times for buildings and 
walls with mineral fibre or natural fibres. Modem fibre reinforced silicate composites in 
this thesis were developed from both heat insulation / resistance materials and fibre 

reinforced ceramics sol/gel materials. Started from 10 years ago, the main application has 
been focused in the fire proof/ barrier, heat resistance / insulation areas plus the 
engineering and design requirements. 

For the fibres used in the composites, mainly chopped glass fibre and short mineral 
fibres for a concern of the cost. The continuous development of AR-glass fibre has 

provided more and more suitable low cost reinforcements for the matrix. 

Although the research is going to be emphasised mainly on the compounding process 
used for making CDMC, its mechanical characterisation. and the ceramic's common 
problem of "brittleness" will also be primarily investigated and the achievement can be 
seen in following chapters. 

CDMC 34 



Chapter 2 Literature review 

Table 2.1 Mechanical, physical and other properties of polyester' and phenolic DMC 
[Their glass fibre content is around 25 %(wt. )]. 

Properties Poly ster DMC Phenolic DMC 
Tensile strength (MPa) 70-90 65-70 

Mechanical Tensile modulus (GPa) 8-10 9-11 

properties Flexural strength (MPa) 120-150 80-90 
Flexural modulus (GPa) 7-9 7-9 

Energy absorpti in impact (J) (4.0 mm thick) 35 25-30 
Physical Density 1.70 1.70 

properties Water absorption 0.2 1-2 
Fire properties Oxygen index (%) 20-30 75-95 

Table 2.2 The general formulation for the liquid silicate composites made from waste 
materials and inorganic/mineral fillers. 

Formulation Materials used 
USA Japan UK Canada 

Liquid silicates x x x x 
Chrysotile asbestos x x 
Ground waste glass x x x 
Inorganic/minerals x x x x 

SiC powder x 
Furnace slag x 

Pigment x 
Polymers x 

Glass fibres x x 

CDMC 35 



Chapter 2 Literature review 

Table 2.3 Solution rates of amorphous sodium silicate powders (3, parts water +I part 
silicate powder). 

Silicates Particle Time to dissolve at 25 'C Time to dissolve at 50 'C 

S'02: Na2O ratio Size(pim) 50% 75% 100% 50% 75% 100% 
3.32, anhydrous 230(65) 60 h 155 min 
2-22 , anhydrous 230(65) 10h 70 h 17 min 1h 

2.0, hydrated 
(18.5 wt % H, O) 

149(100) 27s 
I 

54s 
I 

15s 22s 
I 

29s 

Table 2.4 Summary of the structures in different silicates. 

Silicate rA)e Unit 

structure 

Name Registry No Formula Qs structure 

Discrete, noncyclic 
orthosilicate 

SiO44- Zircon (14940-68-2) ZrSiO4 QO 

Pyrosilicate Si207 6- 'Ibortveitite 17442-06-7 SC2S'207 QlQ1 
Discrete, cyclic 

tetramer 

S'3 096- Benitoite 15491-35-7 BaT'S'309 (Q2)3 

Cyclic hexamer Si6018 12- Beryl 1302-52-9 Be3Al2Si6Oi8 (Q2)6 

Infinite chain 
pyroxenes 

(Si03 2-)n Diopside 14483-19-3 CaMg(SiO3)2 (Q2)n 

Amphiboles (Sio, 16-)n Tremolite 14567-73-8 Ca2Mg5(Si4Oll)2 

(OH)2 

Q3Q2 

Sheet (Si05 2-)n Talc 14807-96-6 Mg3 (OH)2Si4O1O 
(Q3)n 

Table 2.5 The physical and chemical relationships of gel and powder among dehydration 

temperature, surface area, SiOH groups based on the BET equation. 

Dehydration 
Temperature (OC) 

Surface area 
(M2/g) 

SiOH 
Groups (n/m-2) 

Constant 

C 
120 182 10 104 
620 170 3 53 
810 141 2 45 
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Table 2.6 Relationship among the pressure, surface area and porosity of S'02 Particles 
with starting particle diameter 4 mn. 

Pressure 

(tons/in2) 

Surface 

(M2/g) 
Co-ordination 

Number 
Porosity 

(CM3 pores/cm2 body) 

0 636 3 - 
10 522 5.6 0.51 
50 373 9.8 0.33 
100 219 - 0.204 

Table 2.7 The influence of pore -dimension in gel to the classification of absorption of 
particle sizes. 

Pores dimension in 

el 

Exhibiting Capillary P/PO 

<2 nm Absorption No 
2 run Hysteresis for 

water 

Small molecules 0.5-0.8 

3- 10 (Micropores) Hysteresis for 
Large molecules 

Absorption Higher 

>10 nrn Absorption Unity 

Table 2.8 The relationship between porosity and strength of packed silicates. 

Porosity (cm3/cm3 of gel) Strength Relative 
0.26a 100 
0.30 71 
0.5b 12 
0.6 5 

a. Regular close packing 
b. Open packing 
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Table 2.9 Chemical constituents for various types of Portland cement. 

Literature review 

Type Of 
cements 

3CaO'SiO2 2CaO*SiO2 3CaO-AI203 4CaO-AI203-Fe2O3 CaSO4 M. 0 Free 
CaO 

Type 1 45 27 11 8 3.1 2.9 0.5 

Type 11 44 31 5 13 2.8 2.5 0.4 

Type IH 53 19 11 9 4 2 0.7 

Type IV 28 49 4 12 3.2 1.8 1.9 

Type V 38 43 4 9 2.7 1.9 1 0.5 

Table 2.10 Range of composition of typical sodium silicate glasses (3.3: 1 ý Si02: Na2O). 

Assay WT % 

Low High 

Na20 23.21 23.89 
Si02 75.36 76.00 
K20 0.00 0.10 

Fe203 0.005 0.30 
TiO2 0.004 0.052 
M203 0.15 0.51 

CaO 0.032 0.017 

M90 0.004 0.10 

CdO 0.00012 0.0022 

NiO 0.00008 0.0026 
Se3 0.008 0.19 
C02 Nil 0.23 

cl 0.025 0.12 

Ignition less 0.03 0.36 
Ratio by Wt Si02: Na2O 3.154 3.246 

CDMC 38 



Chapter 2 

Table 2.11 Chemical compositions of selected glass fibres. 

Literature review 

Component A-Glass E-Glass Cern-FlIL Glass NEG. AR- 
Glass 

S02 73.0 54.0 62.0 61.0 
Na2O 13.0 14.8 15.0 

CaO 8.0 22.0 5.6 

MR0 4.0 0.5 
K20 0.5 0.8 2.0 

A1203 1.0 15.0 0.8 
Fe203 0.1 0.3 
B203 7.0 
Zr02 16.7 20.8 

*0 2 . 02 1 0.1 

L0 

H 

'20 1.0 
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Raw II Tape Binder Hot 
materialsF-l Casting 

ý-EE9-ý 
bumoutHPre., 

Fig. 2.1 Flow chart of high performance ceramic composites manufacturing process: tape 

casting. 
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Fig. 2.2 Temperature rising degrees and time for ceramic sintering processes. The high 

temperature maintenance in furnace for longer duration consumed large amount of energy 
for different stages of phase changes (Remmey Jr., 1994). 
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Fig. 2.3 White hot at 2268 "C, the glow from a cube of fibre ceramic tile insulation held 

by a technician's bare hand. 

Fig. 2.4 The Conical Apollo radome was built of fused silica compo"itc" in thc carlý 

11101(yanic 111(l nonahlan%C. 1960s. This carly ceramic structure was 100 1/( 
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Fig. 2.5 Three dimensional fibre orientation in chopped fibre composites such as DMC. 

Fig. 2.6 Illustration of general compression moulding outline used for DMC composites. 
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PolyTer Pigment Glass 
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II 
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II 
fibre 

Measuring and weighing machine 
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Turning 

Fig. 2.7 Schematic show of a typical DMC compounding process (Murphy, 1994). 

Na-silicates 

........... moulding 
Filler, furnaci:: 
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ý Wet hardened I 

Fig. 2.8 Silicates, mineral fibre/asbestos, furnace slag composites manufacturing process 
developed in USA and Japan during 80's. 
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I Surface mats I 

Glass fabrics ý-ý Laminates processes I old I Ceramic matrix 

I Compressed curin&ardening I 

Post curing 

Product panels 

Fig. 2.9 Manufacturing method used in glass fibre fabrics-ceramic laminates by 

Claymore Systems in UK in early 90's. 

I Fillers, coloured pigmend 

I Binding agent I 

Granulated blasted 
furnace slaiz 

I poly-methyl- methacrylatý 

Mixer I 10i Hot press moulding ýý Fire test 

Fig. 2.10 A coloured fire resistan t 'composite manufacturing process scheme. 

ceramic 
powder Foamed Injection Immersed 

ceramic -1p -moulding ___" -0 -in acid to 
slurry dissolve 

Fig. 2.11 Ceramic manufacturing process with acid treatment to produce porous 
structure. 
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Fig. 2.12 Detailed manufacturing process for silicates as a binder. 
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Fig 2.13 Viscosity of sodium silicate solutions at various ratios vs. percent of the Na2O 

solid. 
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S14+ 

0 

02- 

Fig 2.14 Basic structure of silicon-oxygen(SiO4 4-) tetrahedron. 
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Fig. 2.15 Some of the simpler polysilicate species identified in sodium silicate solutions. 
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Fig. 2.16 Three steps of polymerisation for silicates from monomers to gels. 
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Fig. 2.17 Polymerisation behaviour of silica. In base solution (B) particles in sol grow in 

size with decrease in numbers; in acid solution or in presence of flocculating salts (A), 

particles aggregate into three-dimensional networks and form gels (Iler, 1984). 
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Fig 2.18 Possible intermediates in polymerisation of silica: A. two silicon anionic 

complex involving OH- ion; B, three-silicon cationic complex involving H+ ion; C+D, 

suggested alternates to A; E, intermediate at silica surface. 
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Fig. 2.19 Bond formation between silica particles. With little or no charge repulsion, 
collision results in formation of inter particle siloxane bonds, catalysed by base. Once 
bonded, the particle grow together. 
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COORDINATION NUMBER VOLU ME% PORE VOL 

SOLD PORES CM3/g 

12 74.5 25.5 0.155 

6 52 48 0.42 

3 
5 95 8.6 

1.3 98.7 35 
3-2-3 

3-2-2-3 0.83 99.17 54 

Figure 2.20 The size of the ultimate particles and the co-ordination number (number of 
particles touching each particle) control the pore volume and average pore diameter. 
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Fig. 2.21 Chemical distribution of sodium silicate products based on the manufacture 
formulation and the final composition. 
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Chapter 3 

TESTING AND EXPERIMENTAL METHODS 

3.1 Introduction 

It is necessary to use a range of experimental methods for measuring mechanical, 
physical, and thermal Properties of the ceramic moulding compounds, in order to evaluate 
and to optimise the formulation, process-ability, mould-ability and properties of the final 

products. Some of the tests used standard testing methods, but some of others did not, as 

no standard method was available. In the latter case, details of the test protocols have been 

given. 

3.2 Viscosity measurement 

A key property that must be measured and controlled is the material's viscosity in order to 

optimise the manufacturing and moulding processes. The viscosity of a ceramic dough 

compound has characteristics similar to polymeric systems. To measure the viscosity, a 
Brookfield Viscometer (BV) was employed. The BV is of the rotational variety (Fig. 
3.1), measuring the torque required to rotate an immersed element (the spindle) in a fluid. 
The spindle is driven by a synchronous motor through a calibrated spring; the deflection 

of the spring is indicated by a digital displayer. By utilising a multiple (four or eight) 
speed transmission and interchangeable spindles, a wide viscosity range can be measured 
(Brookfield Engineering Lab. ). 

For a given viscometer model, the highest viscosity was measured by using the smallest 
spindle at the slowest speed. Generally, for polymer and ceramic matrix systems in 

processing, the viscosity range is from 200 cps to 20,000 cps. For mixtures of ceramic 
pastes with catalysts, hardeners, fillers, additives, the viscosity range can extend from 
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1000 cps to a maximum 1. OX107 cps after several days, which is almost the maximum 
range of a normal viscometer. The BV used in the study was Model DV-IEI+ with high 

viscosity measurement spindles and a viscosity measurement range from 50 cps to 8.0 x 
107 Cps. 

o Basic principles 

Newton assumed that a force was required to maintain a difference in speed between two 
layers in a liquid that was proportional to the difference in speed through the liquid. This 

can be expressed by Equation EM as shown schematically in Fig. 3.2. 

F dv 
A= 

77 dx (EM) 

71 is a constant for a given material called "viscosity", here the unit used was cps. F/A 

indicates the force per unit area required to produce the shearing action as "shear stress - 
, r", the unit is "dynes per square centimetre" (dynes/cm2). The dv/dx is the speed at 

which the intermediate layers move with respect to each other as "shear rate - S". 

Therefore, the viscosity of the materials can be defied mathematically by E3-2: 

vis Cos ity =%= 'r (E3-2) 
dydx S 

The friction of two liquid layers becomes apparent when a layer of fluid is made to move 
in relation to another layer. The greater the friction, the bigger the amount of force 

required to cause this movement. This shearing occurs whenever the fluid is physically 
moved. 

For cylindrical spindlesr and S are defined as Equation E3-3 and E3-4: 

S= 20)R,. 2Rb2 
I 

(E3-3) 
x2 (R, 2 

_Rb 

m 

2 7rR b2L (E34) 
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where (o is angular velocity of spindle (md/s); P, is radius of container (cm); Rb is radius 

of spindle (cm); X is radius at which shear rate is being calculated; M is torque input by 
instrument; L is effective length of spindle. 

A flow chart listing viscosity measurements as required for a full characterisation of the 

materials for measurements is shown in Fig. 3.3. 

* Newtonian and Non-Newtonian viscosity: 

Pure liquid silicates, are similar to a Newtonian fluid. A Newtonian fluid relationship 
between shear stress and shear rate is shown in Fig. 3.4. But when the Mers and 
hardeners are added to a ceramic slurry system, the rheology of the matrix mixture would 
be changed and they may exhibit non-Newtonian behaviour depending on the types of 
additive introduced into the basic ceramic system. 

Non-Newtonian fluids are described as plastic fluids that fall into two categories: 
thixotropic and rheopexic fluids. They exhibit different shear-force curves and viscosity- 

shear curves. Fig. 3.5 shows one of the examples of shear-force and viscosity-shear 
curve for non-Newtonian fluids. Some results of the system slurry with only one filler in 

next chapter indicated that some fillers did not greatly change the viscosity of a liquid 

silicate system. 

* Rheology of the matrix 

Pure liquid silicates are close to Newtonian fluids, and the viscosity is stable in a sealed 
container at ambient temperature (400 - 500 cps). However, the slurry of the liquid 

silicates with silicate fillers becomes a medium to highly viscous Non-Newtonian fluid 

when hardeners and some mineral fillers cause interactions between these inorganic 

molecules. This ultimately results in cross-linking after the mixing process. It can be 

noticed that mixing initially leads to a slight viscosity decrease and shortly afterwards a 
rapid increase in viscosity. A schematic indication of rheological development in the 

matrix slurry during the entire manufacturing process is shown in Fig. 3.6. 
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3.3 Physical properties 

Relevant physical properties of the CDMC moulded panels are density, water 
evaporation, water absorption and void content. 

3.3.1 Density measurement 

The densities of the CDMC panels were measured by the traditional Archimedes Method 
(D 792-86/A). The mechanism involved weighing the specimens both before and after 
immersing into pure water. The density of a specimen is given by: 

d,,,, ter 
* MI 

M2 - M3 

Where: 

m, = the weight of specimen in air; 
m2 = the weight of specimen and plus the thread in air; 
m3 = the weight of specimen and thread in water; 

dwater = The density of water at testing temperature; 
dt = 

dCDMC= The density of specimen. 

(E3-5) 

The densities of the CDMC panels in this research were measured at room temperature 
based on the procedure of ASTM D792 and with the results calculated according to E3-5. 
Specimens were cut from moulded panels in a way as shown in Fig. 3.7. 

3.3.2 Water evaporation 

The water evaporation and retained water in the CDMC during and after moulding were 
measured and calculated with equation E3-6. The water retained in the moulded product 
was calculated from the whole water contained in the compound before moulding, the 
weight loss between the compound during moulding and the final products after 
moulding. 
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Water(%) = 
Ww,,, 

r - 
WL 

X 100% (E3-6) WCDMC 
- TL 

Water(%) is the water percentage contained in the CDMC panel after moulding. W,,.,,, is 
the weight of water in the compound before moulding. WL is the water lost during 

moulding from the compound. WcDmc is the weight of the CDMC panel after moulding. 

3.3.3 Void Content 

The void content of the CDMC panel after moulding can be measured by several methods, 
such as N2 absorption, pressure differentials and image analysis. In this research, image 

analysis was used. The method involved cutting different slices from the specimen 
coupons. From these cut sections of the test specimens, the outline of the voids from one 
section was drawn by the computer either connected with a SEM or an image analyser. 

A, id Void% ý ývOlas x 100% (E3-7) 
AF,,,. 

Then the computer could calculate the void content for the area on the section (A, 
Oids) cut 

from a specimen, using equation E3-7. Since this measurement of the void content relates 
to a particular intersection area (Af,. ), many sections have to be measured in order to 

obtain a statistical average (void %). In this work, each moulded sample normally 

provided more than 7 sections. 

3.3.4 Water absorption 

The absorption of water by a CDMC panel is complex and directly depends on the volume 
fraction of pores and water paths. The water absorption also depends on factors such as 
the glass fibre volume fraction, moulding temperature used, fillers involved and organic 
additives. 
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Generally speaking, to determine the water absorption: 

a. If a material is insoluble in water, 

Wp. 
c = 

G, G, 
x 100% (E3-8) 

G, 

b. If a material contains soluble substance in water, 

Wp. 
c = 

G2- G3 
x 100% (E3-9) G3 

Where, 

GI = The weight of specimen after drying (mg. ). 

G2 = The weight after immersed in to water (mg. ) for 24 hours. 

G3 = The weight of the specimen with immersed into water and then dried afterwards. 

S= Surface area of materials (cm2). 

W= The water absorbed (mg). 

Ws = Absorption of water in mg/cm2. 

Wp. c = Water absorption percentage of a CDMC. 

The size of specimen required for this test is 50x5O mm2 , dried at 70 OC for 4 hours (or 
105 'C for I hour). Then after the specimen were immersed in pure water (20 'Q for 24 
hours, they were taken out of the bath and were weighed within 1 minute. 
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3.3.5 Differential scanning calorimeter (DSQ 

Thermal analysis is a method which studies the changes in structure and properties of a 
material with temperature. It can provide information on changes in physical or chemical 
conditions in an organic or inorganic material. 

A Perkin-Elmer 7 Series DSC was employed to determine the thermal properties of 
ceramic matrix, fillers, hardeners and binders. The apparatus is a computer-controlled 
instrument operating with a DEC workstation. The operation was based on the Perkin- 
Elmer power compensated 'Null-balance' DSC principle. The sample and reference are 
heated or cooled, simultaneously in separate but identical holders with separate heaters 

and platinum resistance temperature sensors. The energy which was absorbed by a 
sample was compensated by adding or subtracting an equivalent amount of electrical 
energy to a heater located nearby. This was done to keep the temperature identical to that 

of the reference and the set point. The difference in electrical energy required between 

samples and reference is collected and plotted against temperature. 

The CDMC matrix, hardeners (such as Fabutit 320 and 328), fillers (such as CaC031 MT, 

FW325, P60) and liquid silicates (Crystal 079) were weighted accurately between 9.0 to 
10.0 mg. They were put into the sample Al pans and were encapsulated by clamping the 

covers. All measurements were done with a nitrogen purge gas at a scanning rate of 20 'C 

per minutes. 

3.4 Tests for mechanical properties 

Mechanical characterisation of the CDMC was carried out by a screw driven displacement 

controlled mechanical test machine, Instron 1122. A minimum of 5-7 specimens for each 
measurement, were cut using a special diamond tipped blade for ceramic composites and 
glass fibre reinforced polymer composites. These specimens were tested for different 
formulations, moulding conditions and duration of post-cure in terrns of tensile, flexural, 

and instrumented faffing weight impact. 

3.4.1 Tension 

Tensile properties were obtained using a standard of tensile test for fibre reinforced 
composite materials. BSI 1003 which is equivalent to the ISO /DIS 3268. 
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The CDMC specimens were prepared by the Type IR method with. end taps to prevent 
failure close to the grips. The dimension of tensile testing specimens and a photo of the 
CDMC testing specimen are shown in Table 3.1 and Fig. 3.8 - 3.9. The tensile specimens 
in this research were kept at room temperature for about 30 days after moulding to reach 
their maximum properties before tests. 

When loading to failure, the cross head speed for type IH specimen was 2.0 mm/min. 
When measuring elongation in order to determine the modulus of elasticity in tension, a 
0.2 mrn cross head speed was used. The dimensions of the specimens were measured, 
width b to the nearest 0.1 mrn and the thickness h to the nearest 0.02 mm at the mid-point 
of the specimen and within 5 mm of each end of the gauge length. Tensile strength was 
calculated at maximum force. 

3.4.2 Flexure (ISO-178) 

This test is used for determining the flexural properties of a flbre reinforced composite 

materials. 

The CDMC in the form of rectangular bars of standard dimensions which were cut from 

the moulded CDMC panels as shown in Fig. 3.10. The apparatus was an Instron 1122 

with 5 kN load cell. Cross-head speed used was 2.0 mm/min. All the flexural specimens 
in this research were kept at room temperature for about 30 days after moulding to reach 
their maximum properties before test. 

The dimension of testing specimens was designed with minimum length L more than 16 

times of thickness. The width b is also a function of thickness, as shown in Table 3.2. 
The results were calculated using EMO and EM 1. The corresponding flexural stress - 
strain curves for some specimens moulded at different moulding temperatures were then 

calculated based on their force-deflection histories. 

3 FL 
af -Tbh' (E3-10) 

Eb -,, ý 
23 AF (EM 1) 

4bh Ad 
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Eb 'Sthe modulus of elasticity, in GPa. 

During a flexural test three different types of breaks can occur: 
a. Initiated on the surface under tension; 
b. Initiated on the surface under compression; 
c. By internal shear failure. 

3.4.3 Impact (ISO 6603/2) 

A falling weight impact test was selected for this programme, using ISO 6603/2 

standard. This test uses a small plate supported on a circular loading jig. This mode of 
testing allows the composite to develop damage over a large area if the damage process is 

available for this to happen. The alternative testing methods, such as charpy tests, restrict 
the damage area to a local zone at the point of impact and have been shown to be less 

relevant for the study of the chopped fibre reinforced composites. 

The force-time, energy-time, velocity and deformation data were obtained throughout the 

event with a striker which was fitted with a force transducer. These data were then 

transferred to a computer for the data analysis. In this way, the force-time, energy-time, 
displacement-time, force-deformation histories, etc. can be obtained. 

This low velocity drop-weight impact test involved a striker which was much heavier than 
the specimen and which was dropped from a certain height onto the specimen surface. 
The fixed plate configuration is normally used as shown in Fig. 3.11. 

Techniques traditionally used for measuring the energy absorption in fracture of metals 
involve complete failure of the specimen (e. g. Charpy) (ISO 179,1982) and this data may 
not be relevant to composites in terms of its application. To obtain more meaningful data, 
fracture toughness tests are often carried out. However, to put these results into 

perspective, tests such as impact are conducted to provide practical information regarding 
to the material's toughness. All the materials configurations manufactured for the 

programme were tested with impact specimens, size of 60 x 60 mm'. The thickness of 
specimens was between 3.0 to 4.0 mm. 
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The incident energy and velocity of the striker were varied by altering the height of the 

mass above the specimen, according to a diagram shown in Fig. 3.12. The force: 

P= mg- F= ma =m 
dv 

(E3-12) 
dt 

The theoretical velocity at impact at time t 

'F 
Vo + gt -f-: --dt 

0m 

_ 
ýE 

-m Fm 

The theoretical impact energy E is determined at the time t by, 

I 
E= FVot + +gFt2 _.. 

L F 2t. dt (E3-13) 
Mf 

0 

E=m. g. h (E3-14) 

Where 

a= Acceleration; 
F= The force on striker; 
g= The free fall acceleration constant; 
m The mass of the striker; 
VO The velocity at the time 
Vt Velocity at time t; 
X The displacement. 

The contact force-time, energy-time histories and force-deformation were recorded using 
an instrumented striker, with a plate motion determined using the equation of motion. All 
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the impact data was recorded and analysed by the CEAST software in a PC computer. 
The testing parameters are listed in Table 3.3. Fig. 3.13 shows two impact force- 
deformation curves of the CDMC reinforced by 12 nun and 6 mm. glass fibre respectively 
with impacting energy 15.9 1 The specimens thickness was 4 mm. 

3.4.4 Interfacial shear strength: micro-indentation 

We have mentioned above that the fibre diameter in the CDMC specimens is 14 gm which 

was supplied by Cem-FEL and the type used was AR50/1. Micro-indentation tests were 
performed using a Berkovich Indentor in order to measure the interfacial shear strength 

shown in Fig. 3.14. The cross-head speed of the indentor was set to 0.2 [tni/s for all the 

experiments presented. The maximum displacement is 200 gm and the precision 0.05 

gm. The load measurement has a precision of 1 mN. The loaded range is from 200 to 600 

niN. During the test, both load and penetration depth are continuously recorded. In the 

diagram, r is the interfacial shear strength; L is the thickness of the specimen or the fibre 

length; F is the load applied to the fibre, and (D is the diameter of the single fibre. The 

interfacial shear strength can be calculated by equation E3-15. If the fibre selected is 

parallel to that of movement of indentor, the L could be the thickness of the specimen. 

'r = ýý0,7L) -> L= E3-15 

3.5 Tests for fire performance 

Fire performance in this research was carried out in two areas, fire penetration using a 
small furnace built to reproduce International Maritime Organisation (IMO) test 

conditions, and materials reaction to fire using a Cone Calorimeter test. 
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3.5.1 Fire resistance 

Experimental fire tests were carried out using a relatively small stack-bonded ceramic 
wool lined furnace, at QMW, that was gas fired by a multi-nosed bumer an-anged so that 
the jet from the burner did not impinge directly on the surface of the specimens. This has 
been configured to match the fire test conditions specified by both British Standards and 
IMO fire tests which call for testing on 1.0 M2 panels. Combined with this, there is a 
greater acceptability of smaller fumaces for testing specimens of elements that are at full 

size, capable of being tested in smaller furnaces (BS 476, Part 20/ISO 843). The CDMC 
test pieces (3.0 x 300 X 170 rnM3) are mounted in a specially designed frame forming the 
door of the furnace. The fumace is computer controlled to follow a specified temperature / 
time programme. The reference temperature is taken as a mean value from four control 
thermocouples set 100 mm from the hot face of the front panel. Each test specimen was 
instrumented with thermocouples on the hot and cold faces. The output of each individual 

thermocouple was continuously monitored for upwards of 60 minutes and recorded using 
a data logging system. The fire penetration test equipment (Fire penetration furnace 

structure) is shown schematically in Fig. 3.15. 

Based on BS476: Part 20, the heating conditions of the standard temperaturettime curve 
and the maximum allowable temperature have been shown in Fig. 3.16. It should be 

govemed by equadon: 

T= 345 loglo (8t + 1) + 20 (E3-16) 

Where T is the mean furnace temperature (IC), t is the time (in minutes) up to a 
maximum of 360 min. 

3.5.2 Material's fire reaction 

The materials fire reaction was examined by a Cone Calorimeter, which has been 
developed for usage as both production and research equipment for measuring the fire 

properties of materials (ISO 5660). 
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A schematic diagram of the cone calorimeter is shown in Fig. 3.17. According to 
ISO/DIN 5665, the equipment comprises a load cell for weighing the. mass, a cone heater 
and a system for collecting the combustion products (soot, gas sampling, temperature and 
pressure measurement). The cone-shaped heater produces a uniform heat flux on the 
sample surface (100 mm x 100 mm) (L. Sarvarant and E. Mikkola, 1986). The heat flux 

can be adjusted between 1 and 100 kWm-2 which corresponds well to different fire 

situations. In this study a heat flux of 75 kWm-2 was used. This causes the surface 
temperature to rise tremendously in very short time. The results are obtained as time- 
dependent curves of different parameters. 

This testing method is based on the net heat of combustion being proportional to the 
amount of oxygen consumed. That is approximately 13.1 X 103 U of heat being released 
per kg of oxygen consumed. Specimens are burnt with an applied heat flux in the range 0 

- 100 kW/m2 rate radiator under the conical heater. The testing measurements included 
heat release rate (HRR); CO and C02 production rates and yields; mass stability and mass 
loss rates; the effective of heat combustion; rate of smoke released and specific extinction 
area. 

Gas analysis instrumentation built into the Cone Calorimeter can give the composition 
distribution for the exhaust gas system. The schematic gas flow chart of cone calorimeter 
is shown in Fig. 3.18. 

HRR [IMO resolution A517(13)] is defined as the amount of heat released by a burning 
body in unit time. It is one of the fundamental properties of a fire and should always be 
taken into account in any assessment of fire since it significantly affects the development 

of fire in a building. The HRR can be calculated from equation 133-17, E3-18: 

q(t) = (Ahý / r�)(1.10) p T*o, - Xo, p CFTý 1.105 -1.5X02 E3-17 
where 

C= 10.0 
.T1.105 

-1.5XO, 
12.54 X 103 (1.10) FTt; 

X'O, - 
xoý E3-18 

where, C, calibration constant for oxygen consumption analysis; T. is the absolute 
temperature of gas at the orifice meter(K); Ap is orifice pressure differential (Pa); q is the 

CDMC 64 



Chapter 3 Testing and experimental methods 

heat release rate; X02is oxygen analyser reading, mole fraction02; X02 'is initial value of 
oxygen analysis reading; X'O 

2 
is the oxygen analyser reading before a delay time 

correction; r,, is the oxygen/fuel mass ratio. 

The CO production rate could be derived from following equation E3-19: 

X,, (t) = X'co(t + t") E3-19 

Where Xco: CO reading, mole fraction; XIcO : CO reading before delay time correction; 

td': delay time of theC02analyser(s); tý': delay time of the CO analyser(s); td: delay time 

of the H20 analyser(s). 

C02production rate could be derived from following equations (W. J. Parker, 1982): 

X, 
ý 
(t) = xloý (t + t, ) E3-20 

XCO 
2 

(t) 
ý-- XIC02 (t 

+ t1d) 
E3-21 

Where 

X02: Oxygen reading, mole fraction; X102 iS oxygen reading before delay time 

correction; 
XCO2 iSCO2 reading, mole fraction; tIddelay time of theC02analyser. 

The effective heat of combustion (EHQ and mass loss rate can be used to prove 

additional information on the fire behaviour of materials, which could be calculated by 

equation E3-22, a time-verying value of the effective heat of combustion Ahff (t) : 

Ak., ff (t) = 
q(t) 

-dm / dt E3-22 
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Where, rn is the specimen mass (kg), at end of the test; (-dm/dt) is specimen mass loss 

rate (kg/s). 

3.6 Equipment and mechanism of SEM, TEM and X-ray 

SEM and TEM microscopes and X-ray diffraction have been used for examining 
microscopic structures and chemical composition. Fig 3.19 shows the various analytical 
mechanisms available with SEM and TEM. Particularly, for investigating the 
polymerisation of the matrix by X-ray microanalysis, the results have been presented in 

the form of diagrams which represent different ratios of composition on the surfaces of 
the matrix cured at different temperatures. 

SEM studies were undertaken on fractured surfaces of tested specimens and on polished 
sections cut from the CDMC panel without testing, and mounted in a room curing epoxy 
resin. The specimens were then polished by grinding machines on a series of successively 
finer silicon carbide polishing wheels. Final polishing was performed on cloth wheels 
impregnated with diamond paste (I [trn particles). Specimens polished with I gm paste 

were found to produce the optimum contrast between fibres and matrix. 

As an example, Fig. 3.20 shows a SEM micrograph of a surface of ceramic moulding 
composite. Some reinforced glass fibres can be observed in a porous ceramic moulding 
composite. 

The surface composition of the ceramic matrices hardened at different temperatures was 
investigated using quantitative energy dispersive spectroscopy (EDS) X-ray microanalysis 
in the SEM (Williams DB, 1984,1996). The quantitative calculation for the X-ray 

microanalysis was based on the technique and equation developed by Cliff-Lorimer in 
1975. They showed that quantification was possible using a simplification of a traditional 
ratio equation, by simply using the ratio of the intensities gathered from two elements 
simultaneously in the microanalysis. 

The Cliff-Lorimer ratio technique uses equation E3-23 as a base for two elements A and B 
in a Binary system. 
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CA 
= k-AB 

LA 

(E3-23) CB IB 

The term kAB is often termed the Cliff-Lorimer factor. It is actually not a constant. It 

varies according to the EDS system and M For a binary system, it can be assumed that 

A and B constitute 100% of the specimen, 

CA+ CB 
' 

/0 (E3-24) -': 1000 

For a ternary and higher order systems (CA+CB+CC -41): 

C' 
= kBc L' 

(E3-25) 
CC IC 

Related k factors: 

kAB -4 
k'AC 

(E3-26) k'BC 

It is a convention that the units of composition are expressed as %(wt. ). 

Energy-Dispersive X-ray Spectrometer (EDS) is a modem analytical technique for a 
quantitative microanalysis or identification of unknown compounds on the surface of 
CDMC mixtures. While in this project, the EDS has been used in quantification and 
identification of leached compound (Na2O/NaOH) on the surface of CDMC and obtaining 
compositional information on the CDMC matrices moulded in different temperatures. 
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3.7 Summary 

Most of the testing methods for obtaining the mechanical, physical, chemical and fire 

/thermal properties for the CDMC have been listed in the Table 3.4 as a summary of this 
Chapter. 
These test processes and results have provided an general evaluation for the CDMC 

processing, moulding and formulation design. These are the bases for further 

improvement and achievement to be done for the CDMC. 
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Table 3.1 Dimension of the type IIII tensile test specimen. 

Item Mean Type II[ 
F OveraU length minimum 250 mm 
h Thickness (for the CDMC panels) 3.0 - 4.5 mm 
b Width of the middle parallel part 25 nun 
L,, Gauge length 100 nim 
E Distance between grips 170 nim 
D Distance between end pieces 150 mm 
T Minimum length between end pieces 50 mm 

Er is the initial tangent modulus of elasticity, in megapascals; 
F, is the change in force in Newton; 
Iý, is the gauge length of the extensometer, in millimetres; 
R is the magnification ratio of the extensomter; 
A is the initial cross sectional area of the test specimen, in square millimetres; 
Z, is the change in the apparent extension, in millimetres, taken from the chart for the 

change in force Fl. 

Table 3.2 The dimension of the flexural specimens of the CDMC. The number of test 

specimens was 5 to 7. 

Thickness, h Width, b Length, L 
1 <h< 10 15 >16xh h=3.0-4.5 mm for the CDMC ) 

Table 3.3 Impacting testing perimeters of drop weight method. All the impacting 

specimens were prepared by the size of 60 x 60 mm'. The thickness of specimens was 
between 3.0 to 4.0 mm. 

impacting conditions 1 11 
Striker mass (kg) 0.78 2.316 

Impacting height (m) 0.68 0.70 
Impacting velocity (m/s) 3.6 3.71 

Impacting energy (J) 5.2 15.9 
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Table 3.4 A list of mechanical, physical, fire and fire reaction tests, test specifications, 
standards and testing machines used in the research. 

Type of test Test specifications Test standard Test machine 

Mechanical Tension BSI 1003ASO /DIS 3268 Instron. 1122 

tests Flexure ISO-178 Instron 1122 

Impact QMW CEAST machine 

Shear strength Micro-indentation Berkovich 
between Indentor 

fibrelmatrix 

Physical Density D 792-86/A Oertling R51 
Mark H 

properties Water absorption Oertling R51 
Mark H 

Voids content Image analysing 
system 

Fire Fire penetration BS476: Part 20 (IMO) Furnace 

performance Materials fire ISO/TR 3814; Cone Colorimeter 

reaction ISO/DIN 5665 

Viscosity Viscosity of Non-Newtonian Model DV-111 

matrix slurries Viscometer 

TEM Micro-structure Standard operating TEM 10OX/100 

procedures Kev, 46 cmc/L 
SEM Micro-graphs Au or carbon coated 

samples 
X-ray Substance SEM(IEM 

identification 

DSC Thermal analysis D3418 

TGA Thermal 

gravimetric 
analysis 
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Fig. 3.1 A schematic drawing of the structure / working mechanism of the Brookfield 
Viscometer, Model DV-111+. 

-4ý dv 

V2 F 

vi dx 

Fig. 3.2 Newton defined viscosity by considering the model of two layers in liquid water 
at room temperature. 
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Viscosity Measurement of the CDMC Matrix 

Viscosity of the matrix with different fillers 

Viscosity of the matrix with different percentages of fillers 
Matrix 

-I.. 
Viscometer Viscosity of the matrix with time - maturation Mixture (Brookfield) 

Viscosity of the matrix with catalysts 

Viscosity of the CDMC matrix systems 

Fig. 3.3. This chart shows the categories of viscosity measurement in this work. 

S 

(A) 
T 

I 

(B) 
S 

Fig. 3.4 Newtonian fluid relationship between shear stress (, r) and shear rate (S) is a 

straight line (A), and viscosity (ij) is independent of shear rate (B). 

S 

(A) 

T 

TI 

(B) 

S 

Fig. 3.5 One type of non-Newtonian fluid, pseudo plastic fluid, (A) shear rate increases 

with shear force; (B) a decrease in viscosity (TI) with an increase in shear rate (S). 
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id silicates 
+ After mixing 

Fillers 

Testing and experimental methods 

Hardeners 

Newtonian stage Newton to Non-Newtonian 

Thixotropic uid 
g Viscosity decreasluin'g 

. dý 

Rheopectic fluid stage Maturation 
Viscosity increasing tremendously 

I 
400cpstoJX106 

Solid plastic stage 
Ceramic 
moulding 
compound 

Fig. 3.6 A schematic indication of the expected rheological development in the ceramic 

matrix slurry during the period of moulding. 

ý mm 

Fig. 3.7 The specimens were cut from the moulded panels for different mechanical, and 

physical tests and measurements. 
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i -44 

Fig. 3.8 Type III specimen for tensile test. 

Fig. 3.9 A tensile specimen of the CDMC with end taps and mounted strain gauge. 
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Fig. 3.10 A schematic drawing of a specimen for flexural test, three point bending. 
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Fig. 3.11 Schematic representation of the miniature (QMW) impact support conditions. 
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Impactor 
striker 

Fig. 3.12 The basic demonstration of the impacting mechanism during drop weight 
impacting test. 
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Fig. 3.13 Impact force-deformation of the CDMC with 22.6%(vol. ) AR62/2-glass fibre. 
The fibre lengths are 12 mm and 12 mm +6 mm respectively. The specimen dimension 
was 60 mm x 60 mm x4 mm, moulded at the temperature 140 'C. 
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matrix 

Fig. 3.14 Testing mechanism of a fibre push-out for shear strength between glass fibre 

and ceramic matrix. 
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Fig 3.15 Schematic view of furnace structure used for fire penetration test, s(nall scale 
IMO testing equipment. 
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Fig. 3.16 Typical furnace temperature-time curve compared with BS476AMO standard 

curve and the maximum and minimum allowable temperature. 
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Fig. 3.17 A schematic structure view of the Cone Calorimeter heating system, materials 

reaction to fire. 
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Fig. 3.18 The exhausting gas collection and analysing system in the Cone Calorimeter. 

SEM and TEM 

X-rays 
(71rough-thickness 
composition information) 

Primary Backscattered 
F-lectrons 
(Atomic number and 
topographic informaticn) 

Secondary Mectrons 
('ropographic informatio: 

'I'Mn'rransrnitting Specimen 

]Elastically 

31nelastically 'ICrarismind scattered 
El tr ns IE lectrons Scattered 

Mectrons 
NZ 

A/ 
(E: nergy Icss) (Mic -rural information 

('17hrough-thickness from images and crystallographic 
composition information) i nformat ion usi rig diffrac ticn pa tic ms) 

S477als resuffina from the Irturactlew7 of a hi. 07 enerpy electron boom 

Fig. 3.19 Analysis mechanisms of SEM, TEM and related x-ray. 
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Fig. 3.20 A SEM photograph of a polished surface of the CDMC. 
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Silicates 079+10% Fabutit 320 cured at 180 OC for 60 min. 
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Fig. 3.21 EDS compositional analysis made by SEM. The ceramic resin matrix cured at 
180 'C, unwashed particles and washed particles after curing. The ratio of Na: Si kept 

stable or unchanged. 
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Iryll- 
Chapter 

MATERIALS AND COMPOUNDING 

4.1 Introduction 

This chapter is concerned with the development of a basic formulation for a ceramic 
dough moulding compound (CDMC). The essential requirements for the CDMC are 
discussed and the reasons for the selection of the CDMC constituents are presented from a 
standpoint of achieving process-ability and general mechanical and physical properties. 
The optimisation of the moulding compounds to meet more specific property criteria is 
discussed in later chapters. The development procedure is briefly introduced in Fig. 4.1. 

4.2 The basic requirements for a dough moulding compound 

A dough moulding compound is a material that is handlable in its unprocessed state at 
room temperature. It has a storage capability and will flow at processing temperatures. 
This flow-ability allows it to be transformed in the moulding process into a required shape 
and then cured into a solid material form with structural properties. These requirements 
are common irrespective of whether the material is based on polymer or ceramic matrices. 

The handlability of the material at room temperature, and its ability to be moulded and to 
flow at processing temperatures are best described by referring to an idealised viscosity - 
time plot as shown in Fig. 4.2. The indicative lines illustrate a typical viscosity history of 
a polymeric matrix DMC and the target behaviour curve for the ceramic matrix system 
under development. Specific data points from such target curves are given in Table 4.1. 
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The CDMC will be a matrix system which is based on liquid silicates. This matrix will be 
liquid initially and, via some curing process, transform into a cross-linked flute 
dimensional structure to provide the basis for the structural performance. The strength of 
the CDMC will be provided by fibres, while the viscosity control will be achieved by the 
introduction of fillers. Fillers will also provide a route to keep costs low, to improve 
dimensional stability -and ultimately to introduce functionality of various kinds into the 

composites ( e. g. to optimise fire resistance). 

The options available to formulate a CDMC are enormous and, as such, a decision was 
taken at an early stage in this programme to rationalise the development of a range of 
materials based on a relatively standard base formulation. This consisted of a mixture of 
liquid silicates, a curing or hardening agent and a base filler. All other fillers are added to 
introduce additional properties. 

4.3 Ceramic resins 

The CDMC concept is possible because in liquid silicates, we have a material form that is 

soluble in water but which can be transformed into an insoluble, polymeric form. Sodium 

silicates in solution therefore, form the most essential ingredient in our standard matrix 
formulation. The major drawback of using soluble silicates in solution is that, after or 
during the hardening process, it is necessary to lose water from the compound. If water is 

retained by the composite, this will provide a route for dimensional instability and 
possible cracking of the material. 

The silicates are available commercially with a variety of different water to solid silicate 
ratios. A list of solutions supplied by a manufacturer, Crosfield, is given in Table 4.2. In 

order to achieve the minimum water content in the final product, solution 079 has been 

selected as a base liquid for the CDMC. The solution as it stands could be used in 

conjunction with a suitable hardener to achieve a solid product. However the water 
content is likely to be too high and the hardened matrix will shrink, exhibit little 
dimensional stability and probably crack. 
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The next part of the formulation is therefore to tailor additional silicates in solid form. 
Again a range of solid silicates are available commercially that co . uld be added to the 

silicate solution to increase the solid content. The concern is however that dissolving in 
further silicate would result in adopting the characteristics of a gel and ultimately a water 

glass, which makes the material unsuitable as a carrier liquid for the CDMC. This 
difficulty has been overcome by selecting from a list of solid silicates, a compound called 
P60 as identified in the list of Table 4.3. The reason for selecting P60 is that this silicate 
will not dissolve in the silicate solution at room temperature, but will do so at elevated 

processing temperatures. The net result of this is that at first the viscosity of the 

suspension is increased but the material is still capable of flow and can still act as a carrier 
for additional compounds such as fibres and structural fillers. The silicate will dissolve at 

processing temperatures which will result in a reduction in viscosity and an increase in the 

overall silicate to water ratio. The effect of adding the solid P60 on the liquid viscosity is 

similar to that of adding other filler types and will be shown alongside alternative fillers in 

the next section. However, at this point it is simply worth noting that a P60 content of 5- 

10%(vol. ) was used throughout. 

4.4 Hardeners 

Once a basic liquid composition has been identified then attention has to be given to the 

mechanisms for hardening the liquid and converting it to a 3-D network inorganic 

polymer. 

Commercial hardening agents are available which take many forms. Based on previous 
experience with liquid silicate systems and the target processing temperatures, a modified 
aluminium. phosphate compound sold commercially as Fabutit was identified as being 

appropriate. A type of very fine Fabutit powder (320) has been examined by SEM and its 

physical status is shown in the SEM micrograph in Fig. 4.3. This compound effectively 
reacts with the liquid silicates to initiate or to create cross-linking 3-D chemical structures. 
A group of brief indicative formula for the chemical reactions that might be involved is 

shown in Fig. 4.4. 
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The basic matrix system with hardener (silicates : hardener = 100: 5) was examined by the 
TEM and showed small particle islands of phosphate in a two phase structure in a matrix 
cured at 200 'C as shown in Fig. 4.5. The poly-silicate glass presents a continuous phase 
while the hardener powder islands are distributed in the matrix. Surrounding the Fabutit 

particles wWch are sized around 1-5 gm, the needle like structure of silicates appeared in 

the continuous glass phase. It was determined by TEM X-ray diffraction that the 
composition of the mixture consisted of sodium silicates, sodium hydrate and aluminiurn 
phosphate. The silicate structure appeared amorphous while the Fabutit was crystalline 
structure, as in its original powder form. 

The Fabutit is added to the silicate solution as solid particles. This compound does not 
dissolve and accordingly must interact with the silicates via reactions at the particle 
surface. The Fabutit will increase the viscosity of the suspension both by virtue of its 

particulate nature and also by stimulating the polymerisation of the silicates illustrated in 

the group of indicative chemical reaction formulae. The viscosity versus time for the 

standard matrix system with different percentages of hardener - Fabutit 320 is shown in 
Fig. 4.6. All the viscosity curves were increasing with time. The more hardener added, 
the higher the viscosity increase rate. 

In order to obtain additional information on changes in physical and chemical structure, a 
DSC analysis of the hardener-Fabutite 320 was obtained. The DSC examination can 
determine the material's physical changes or chemical reactions within the materials by 
detecting any energy loss or absorption. Normally, a DSC result can also help to explain 
the thermal behaviour of the tested materials. The tested temperature range is from 50 - 
400 'C as shown in Fig. 4.7 and this covered the moulding temperature range from 99 to 
200 'C. It showed that at the moulding temperature below 250 'C, nothing would happen 
to chemical structure of the Fabutit 320 if it is heated up independently. For instance, the 
evaporation of unbound water or moisture occurred at the temperatures below 150 T. 
Then the structure may change at the temperatures around 240 to 275 OC. 

It is important that addition of the Fabutit does not result in a rapid reaction at room 
temperature, and does not as a consequence result in an unacceptable increase in 
viscosity. Based on the data shown in Fig. 4.6, a Fabutit content of 5% in the matrix was 
chosen as fixed level for a duration of this programme. 
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4.5 Fillers 

Fillers are very important constituents for all polymer and ceramic compounds in terms of 

costs, physical, chemical and mechanical properties. Based on the requirement of the 

compound, the fillers used are low cost minerals. The combination of liquid silicates, 
Crystal P60 and Fabutit hardener results in a stable system where the viscosity of the 

matrix can be allowed to increase in a controllable way. This actually forms the 

processing base for the matrix. However, the viscosity of this slurry is still too low for 

practical use and also the matrix would be too expensive for many applications. It is 

accordingly necessary to include some form of particulate fillers as part of the standard 
matrix formulation to raise the stable viscosity to the appropriate level and to dilute the 

silicate liquid content. This dilution reduces cost and improves dimensional stability for a 

moulded product. Ideally the matrix would cure but not shrink during moulding. 

4.5.1 Effects on viscosity of the rnaýrix 

In order to develop a standard fonnulation it was considered desirable to select fillers that 

would be a constant factor in all formulations but where additional or alternative filler 

types could also be added to modify the formulation for specific functional needs. 

Candidate Mer types for adding to the compound include: Calcium Silicates 
(Wallonstonite = FW), Martinel Trihyde (AI(OH)3 = MT), Calcium carbonate Mllicarb), 

Talc (Nfigsil) and Silica/silica glass (Spheriglas), SiC and SiN, etc. Some of these fillers 

have been used to formulate a range of trial compounds whose viscosity have been 

measured using a Brookfield viscometer, listed in Table 4.4. 

The effects of adding a series of candidate fillers on the viscosity of the matrix 
suspensions are shown in Fig. 4.8. The effects of the fillers are reasonably constant with 
time as shown in the Fig. 4.9 and Fig. 4.10 which indicate respectively the effects of 
adding different composition of two fillers, Wollanstonite and MT for a period of time. It 

should also be noted that the viscosity result in Fig. 4.8 refers to a compound with added 
Fabutit hardener and there is no short term (2 hours) effect of filler additives reacting with 
the hardener to increase viscosity. 
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Based on these viscosity measurements it was apparent that a maximum filler content 
(irrespective of filler type) of about 30-50% was permissible before the viscosity of the 

compound became too high for easy processing. 

From the range of fillers studied, the Wol! anstopite (FW) was selected as a standardised 
base filler system. FW is essentially a calcium silicate and is not soluble in the liquid 

silicates but will bond well with the matrix when it cures. FW is furthermore available in a 
more fibrous form to select for different applications and this provides additional benefits 
in terms of viscosity and reinforcement for a final composite. A'Wollanston'te powder has 
been examined by SEM and is shown in Fig. 4.11. 

A minimum level of 15 - 20%(wt. ) FW was added to all matrix compositions with a total 
filler content as high as the maximum 50%. MT was added for special requirements such 
as for the fire performance. Other fillers including P60, Fabutit, etc. were adjusted 
according to the needs for cost, mechanical and thermal properties. 

In the manufacturing process, materials selection and preparation determined the viscosity 
of ceramic slurries. A well controlled viscosity can be a pass ticket for a further successful 
moulding or achieving qualified products. The viscosity has a significant influence on the 

mechanical properties and the production efficiency. 

For liquid silicates and their slurries, viscosity development takes place in two stages as 
shown in Fig. 4.12. One is an Newtonian stage, the other is an Non-Newtonian stage. In 

this research, the main discussion is the effects on the matrix viscosity by hardeners 

which is in the Non-Newtonian fluids stage. 

4.5.2 Mechanical properties of the CDMC: effects of different fillers 

Originally, the major selection criteria for fillers was their chemical and physical 
compatibility with a base matrix. Based on this, the fillers evaluated were Wallonstonite, 
MT, Spheriglass powder, Millicarb and Talc. The reason to use these fillers was that they 
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were stable, commercially available, low cost and were often used in polymer and ceramic 
composites. Within this group, W was believed to be one of the best fire retardant 
minerals, as a large amount of chemically bonded water is released when subjected to heat 

or fire. The Wollanstonite, Spheriglass and Talc are minerals having the basic chemical 
structure of mineral silicates compatible with the liquid silicates and thermally stable over 
1000 'C. All fillers were examined in the CDMC composites in this section, using each 
single filler individually to replace all other fillers in the matrix. 

The tests were carried out in two sections. Section I used general fillers, they were 
Millicarb, W and Ti02 powders which are not in the domain of silicate minerals. The 

section III used a crystobalite, a T85 (ceramic foamed particles), a grinding glass powder 
(Spheriglass), a fibrous, Wollanstopito, a powdered Wollanstonite and a Talc, which all 
have similar mineral structures. The flexural properties for section I fillers and section III 
fillers were shown in Fig. 4.13 and 4.14. 

It was found that the CDMC with fibrous FW has the higher flexural strength which was 
57 NVa and the Talc filled CDMC achieved the highest modulus of 35 GPa. The metallic 
silicates such as glass powder containing C2+, A13+ silicates and Talc are more compatible 
with the matrix system and lead to slightly better flexural properties. 

In order to establish a standard matrix system, fillers needed to be not only compatible 
with silicates but also assist the manufacturing process, while providing desirable 

mechanical properties after moulding. It was found that FW, Talc, CaC03 and TiO2 

present the best or reasonable mechanical properties, while all of them were compatible 
with the manufacturing procedures. As a result of this investigation, therefore, in 
formulation SF-II Gater used as standard formulation), FW was selected as the main 
filler, for achieving best manufacturing feature and mechanical properties. 
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4.6 The base line formulation 

Materials and Compounding 

The base line formulation for the matrix designated as SF-III was selected on the basis of 
the test results and the matrix formulation listed in Table 4.5. All the other matrix 

compositions with different functions for various applications can be derived from this 

matrix formulation. SF-II was formulated with liquid silicates, hardener and mineral 
fillers based on their effects on viscosity. 

A typical viscosity curve of the standard matrix effected by Fabutit and other mineral 
fillers to the matrix system after one hour is shown in Fig. 4.15. Adding the Fabutit to the 

mixture increases the viscosity quickly as designed and expected. 71be final viscosity of 

matrix reached around 1.0 X107 cps after mixing for 2-3 days, the viscosity of the 

material is stable and the material is ready to be moulded. 

4.7 Glass fibre 

Alkali-resistant glass fibres provided by Cem-FlIL with more than 16% Zirconia in their 

composition are durable in an alkaline environment. Some of the properties of selected 
glass fibres are listed in Table 4.6 and different types of chopped AR-glass fibre, roving 

and E-glass fibres which have been used are listed in Table 4.7. 

During a preliminary study, E-glass fibre and Cem-FIL AR-glass were used to compare 
their chemical resistance and mechanical properties. These Cern-FIL fibres are able to 

resist a very high alkalinity produced by the hydration of alkaline matrices while under the 

same conditions, the E-glass can be severely corroded and results in a decrease in 

mechanical properties. 

Vetrotex E-glass (Tex 2450 for polymer SMC/DMC), Cem-FIIL 5011,62/2 rovings are 
typical E-glass and AR-glasses for chopped fibre composites and have been used 
throughout this research. The Cem-FIIL roving are used in spray process for cementitious 
and concrete composites. Cem-FIL Chopped Strands, consist of a continuous filament, 

chopped to pre-selected lengths (6 mm, 12 mm, 24 mm). Some Cem-FIL chopped 
AR62/2 glass fibres with length 12 mm are shown in Fig. 4.16. 
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4.8 Glass fibre volume fraction 

The volume fractions of the glass fibres in the CDMC are defined by its formulation 
before moulding, the weight difference before and after moulding and the density of a 
moulded CDMC panel. The weight difference is the water evaporated during the 
moulding. 

For example, Matrix + 22.6%(vol. ) GF system can be formulated by 436 g of glass fibre, 
1342 g of ceramic compound (solids) (all together 1778 g). AR-Glass fibre density is 

around Df = 2.68. For this particular case, the volume of glass fibre used: 

Wf 436 3 Vfibre = :: -- =-= 176.49cm E4-1 
Df 2.68 

The measured density for composite: DCDMC= 2.2365 (measured after moulding), 

therefore, 

VCDMC 
= 

Wry "= 1778 
= 795.17CM3 E4-2 

DcDmc 2.2365 

Volume fraction of glass fibre: 

Vf = 
Vf 

= 
176.49 

= 22.2%(vol. ) VcDmc 795.17 E4-3 

Mattix volume fracdon: 
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Vm =1- Vf = 1- 22.2% = 77.8 %(vol. ) 

Weight % of glass fibre: Pf (%wt) = 
Wf 

= 
473 

= 26.6%(wt) WcDmc 1778 
E4-4 

From E4-4 and E4-1, the relationship between Vf and Pf can be deducted as following in 

E4-5: 

Vf =V re 
- 

WXDf 
Wf 9 DcLýmc 

. 
D, 

0 Pf 
VCDMC WCDM517) WCDMC e Df Df 

/ CDMC 

E4-5 

For example in this formulation we can work out the volume fraction of glass fibre in 

order to examine the equation E4-5: 

2.2365 
x 26.6%(wt) = 22.2%(Vol. ) E4-6 Vf = 2.68 

If we assume the Df and DO)mc is fixed here, the simplified equation of E4-5 can be 

deducted as: 

Vf = 0.835 X Pf 

Df : 
DCDMC: 

Vf : 

density of the glass fibre; 

density of the CDMC, measured; 

fibre volume fraction in the CDMC; 

Materials and Compounding 

E4-7 
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VCDMC volume of the CDMC composite; 

VM: volume fi-action of the matrix in the CDMC; 

Wf : weight of the glass fibre; 

WCDMC: weight of the CDMC; 

Pf : weight percentage of the glass fibre. 

Materials and Compounding 

The equation E4-7 is the relationship between a glass fibre volume fraction and the weight 
percentage. The results of this equation and experimental density test for the CDMC made 
it clear that the density of 22.6 %(vol. ) CDMC (8.0 MPa, 130 T moulded) is less than 
the density of glass fibre, due to the less dense matrix system (DCDMC= 2.22-2.24). 

With a weight and volume fraction increase for a particular glass fibre, the volume 
fraction of the matrix would be decreased. It was noted that when the weight percentage 
of glass fibre exceeded 30%(wt. ), it can be difficult to process and to mould with the 

composites. 

4.9 The CDMC formulation 

The combination of the standard matrix, SF-H with glass fibres produced a moulding 
compound, which was identified as a ceramic dough moulding compound (CDMQ 
before it is hardened after moulding. The overall manufactured formulations and 
combination of the matrix with selected glass fibres and fillers are revealed in Fig. 4.17. 

An SEM micrograph of the matrix is shown in Fig. 4.18 and reveals a continuous silicate 
matrix phase and particles which were originally mineral powders (FW, Fabutit, and etc. ) 

uniformly distributed. 

CDMC with E-glass fibre and AR-glass have been studied in order to compare the 

mechanical properties. The mould-ability of the E-glass composite and the comparisons of 
E-glass and AR-glass in the composites have also been examined and will be discussed in 
the Chapters on the mechanical properties of the CDMC. 
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The glass fibre fi-action in the composites is adjustable with volume fraction from 0% to 
25 or 30 %(wt) which is a point that it started to be difficult to obtain a full wet-out of the 
fibre and the quality of the CDMC can not be guaranteed. 

4.10 Compounded CDMC 

The general aim of the manufacture for CDMC moulding has been shown in Fig. 4.19. 
The conditions high lighted in the Figure are required for the compound to flow in the 

mould. The flow ability during moulding for complex parts by using this compound was 
demonstrated by the moulding carried out later. The CDMC of a small quantity normally 
can be made with a food mixer as shown in Fig. 4.20. 

Varieties of formulated CDMC were manufactured with a standard compounding and 
moulding process which has been schematically shown in Fig. 4.21. 

All the manufacturing operations were canied out at the room temperature. Before 

moulding, the compound needs to be matured. The matured CDMC has a viscosity which 
is ready for moulding as shown in Fig. 4.22. It can be different shapes as required for 

moulding processes for different shapes of products. 

If the viscosity is too high for some applications, the compound should be heat treated to 

achieve good moulding viscosity. Two methods could be used for pre-treatment: 

9 Preheating the ceramic moulding compound 

The material can be softened prior to mould by a micro wave or other methods which will 
shorten the moulding time. The advantage of a preheated DMC is that this improves the 

matrix flow to details in the mould, causing less pores and vacancies, and allowing the 

use of a low moulding pressure. This also reduces the risks of the fibre shearing damage 

while a matrix is still rigid. The disadvantage is that the degree of heating of the CDMC (if 
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by microwave) was difficult to control and an uniform temperature profile is difficult to 

achieve quickly. 

9 Slow moulding 

The CDMC compound can also be moulded directly without any preheating by spending a 
longer time to fully close the mould. But it might produce a less smooth surface, and a 
increased risk of damaging the mould and fibre, because a high moulding pressure has to 
be adopted. 
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4.11 Summary 

The feasibility for processing the formulated matrices and raw materials for the CDMC 

were investigated in this chapter. The rheology and features of the compound made the 

compounding and moulding possible and approved applicable. Proper composition of 
matrix system and reinforced glass fibre have been formulated together based on the 

viscosity effected by hardeners and mineral fillers. Matrix system SF-H has been selected 
as a general matrix for further combination with the glass fibre into the composites. 

The viscosity of the compound slurry played an important role in processing the CDMC. 

And an increased viscosity of mixture is ideal for a stage of the compound moulding. The 

matrix initial viscosity was, as expected, low enough to wet out the chopped glass fibre. 

Then the viscosity of premixed paste added with chopped fibre glass can increase 

significantly (: ý. jX106 Cps). 
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Table 4.1 The viscosity requirement for the CDMC compounding. 

Time (days) Directly after 
compounding 

One day after 
compounding 

One week after 
compounding 

Viscosity, cps 1 5000 -10000 1 6x 10' >= lx 10' 

The final viscosity of the compound expected to be > or =Ix 106 Cps. 

Table 4.2 The chemical and physical features of the liquid silicates. 

Grade Si02: Na2O 
(WO 

Total solid 
% 

Viscosity at 20 
'C cps 

Na20 % Si02% 

079 3.30 38.1 500 8.85 29.25 

074 3.37 36.2 150 8.25 2'/. 9u 

070 3.30 34.4 70 8.00 26.40 

Table 4.3 The formulation of the powder silicates (Specification of Crosfield, 1994). 

Grade Mean Wt Mean Mol Mean Na2O Mean Si02 Mean Total Bulk 
Ratio Ratio % % Solids Density 

Si02: Na2O Si02: Na2O % g/Litre 
Crystal C 2.00 2 06 27 00 53 00 80.0 400-500 Powder . . . 

ýPowdcýr ýPk 
i'3 0 3.41 :1 &60 6 1.50 80; 0 5,6-650-' 

Crystal AL I 
2.00 2.06 28 56 00 84.0 80-120 Powder . 
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Table 4.4 'Me viscosity test compositions of the ceramic slurries in the compounding 
control process, tested at 20 IC. 

Slurry composition Hardener used 
Percentage Wwt. ) Testing 

condition 
Hardener Filler 

Silicate 079+FW* Fabutit 320 5 5-60 R. T. *** 

Silicate 079+MT Fabutit 320 5 5-60 R. T. 

Silicate 079+Silica Fabutit 320 5 5-65 R. T. 

Silicate 079+Talc Fabutit 320 5 5-65 R. T. 

Silicate 079+MilUcarb Fabutit 320 5 5-65 R. T. 

silicate 079+P-60 Fabutit 320 5 5-65 R. T. 

Silicate 079+FW 5,10,20 R. T. 

silicate 079+MT** 5,10,20 R. T. 

Silicate 079+Fabutit 320 5,10,12.5,15,17.5,20% R. T. 

FW - Wallonstonite FW 325. 
** MT - Martinal Trihyde. 
***R. T. Room temperature. 

Table 4.5 The formulation of SMI + AR/E-glass fibre for the CDMC for general 
applications. 

Formulation Il %(wt) of different raw materials 

-011 , _--Crystal ", 
35.0% 

ý'Wallonstonite (Flý) 15.0-20.0% 
---P-60-- 4% 

Hardener 2-5% 
Glass fibre (E-glass or AR-glass) 0-35 
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Table 4.6 Some properties of A-glass, E-glass, AR and NEG glass fibres. 

Properties A-Glass E-Glass Cem-FEL AR-Glass NEG AR-Glass 

Specific gravity 2.46 2.54 2.70 2.74 
Tensile strength 3130 3448 2482 2448 Wa) 

Modulus of 65 72 80 79 
elasticity(GPa) 
Strain at break 4 7 4 8 3.6 2.5 M . . 

Table 4.7 Different types of chopped AR-glass fibre, roving and E-glass fibre used for 

the CDMC in this research (Vetrotex and Cem-FIL technical specification, 1994 and 
1996). 

Products *Cem-FIIL 5011 Cem-FEL 62/2 *Vetrotex roving 
E-glass 

Length of the fibres 12 mm 6 mm 12 mm 12 mm 
Colour Pink Green Green White 

Filament diameter 14 g 14 g 14 g 12 g 

Filaments per Strand 102 102 64 

Strand Tex (g/km) 76 38 38 

Loss on Ignition % 1.5 1.7 1.7 1.7 

Roving Tex 2450 2400 

*Cem-FIL 5011 roving was chopped by a SMC machine to 12 mm length when used in the CDMC- 

*Vetrotex SMC roving was chopped to 12 mm length by a SMC machine when used in the CDMC. 
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Raw materials 

Formulation 

Materials and Compounding 

Viscosity Compounding 
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Materials and Compounding 

Moulding process 

Physical properties 

Fig. 4.1 Development review at the stage of materials and compounding. 

TI (cps) 

JX107 
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Days 

G; D 

Fig. 4.2 The ideal viscosity development of polymer and ceramic matrices for the 
DMC/SMC with similar conditions of compounding, thickening control and moulding. 
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Fig 4.3 A SEM diagram shows the very fine Fabutit powder. 

Materials and Compounding 

H20 + M20'XS'02 + H3PO4 10 xH2SOý-H20 + M2HP04 

M20. XS'02 + A' A +H 20 xH-&03-AI(OHý HO + M-, HA103 

M20*XSio-1 + H20 + C02 00- xH2SiO3-H20 + M2M 

H2SiO3 + n(H2SiC)3) 

ir 
0 0 0 0 H- O- Si- 0- Si- 0- SI -O- S1- 0- H 
0 0 0 0 

Fig. 4.4 The possible chemical reactions involved in cure of silicates with phosphates (M 

=Li, N a, K). 
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Fig. 4.5 The Fabutit islands in the matrix of silicates/Fabutit. The silicates appeared to be 

a continuous phase identified by TEM to be a mixture of Na, OSIO, 9H, O (19-1239), 
Na, Si,, O, (19-1237/18-1240), while the Fabutit island phase was identified with TEM to 
be a Al, (PO, ), (20-44A) surrounded with the sodium silicate structure. 

CDMC 



Chapter 4 

100000000 

10000000 

1000000 

100000 

10000 

1000 

Materials and Compounding 

20% 

17.5 

12.5% 

10% 

0 1ý1 

100 111111111 
(5) is 35 ss 75 95 1 is 135 155 

Time (min) 

Fig. 4.6 The viscosity-time of the matrix system with 5- 20%(wt. ) Fabutit. Measured at 

room temperature. 
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Fig. 4.7 The DSC graph of a hardener (Fabutit 320) used in matrix systems. The 

hardener was examined from temperature 50 'C to about 400 IC. 
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Fig. 4.8 The viscosity of the matrix with hardener, FW, MT, Millicarb, P-60, silica and 

talc vs. the percentage of fillers measured at room temperature (20 'Q. At the X-axis 

"+F" is the point added the hardener. 
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Fig. 4.9 The viscosity of the matrix, Crystal 079 + 5-20c/c, (wt) FW325 measured at 

room temperature (20 'C). 
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Fig. 4.10 The viscosity of liquid silicates with 5-30%(wt. ) Martinel Trihyde (MT) as 

filler and was measured at room temperature (20 'Q. 

Fig. 4.11 A SEM micrograph of the fibrous Wollanstonite. 
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Fig. 4.12 Rheology development of liquid silicates from a Newtonian stage to a Non- 

Newtonian stage with variations of rheology. 

CDMC with 15%(vol. ) AR-50/lGF + 30%(wt) selected fillers, TIn = 140 *C Pm = 80 Bar 
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Fig 4.13 Flexural properties of the CDMC effected by different fillers, NHicarb 

(CaC03)1 MT and TiO, using combination of ceramic matrix + 15%(vol. ) AR50/IGF, 

moulded at temperature of 140 'C. 
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ID Flexural strength (MPa) 

Ej Flexural Modulus(GPa) 
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CDMC with 15%(vol. ) AR50/1 GF + 30.0%(wt) selected fillers, Tm = 140 'C. Pm = 80 Bar 

Crys-b T85 Spheglass FWF FW Talc 

Fillers 

Fig. 4.14 Flexural properties of the CDMC effected by different metallic silicate fillers 

based on combination of ceramic matrix + 15%(vol. )AR50/1 GF, moulded at 140 'C. 
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Fig. 4.15 'Ilie viscosity curve of a typical compund slurry system vs. time using 
5.0%(wt. ) Fabutit as a hardener, measuring temperature 20 IC. 
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A 

B 

Fig. 4.16 A SEM micrograph (A) and a photo (B) of sarne AR 62/2 chopped fibre with 
length 12 mm- 
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Manufacturing glass fibre reinforced ceramic moulding compound - 
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Matrix 
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Matrix A CaC03. AI(OH)3, FW, Crys-B 
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Fig. 4.17 This diagram shows the progress in manufacture of the CDMC: concept 
formation, formulation optimisation from preliminary formulations and some CDMC 

produced in the work. 
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Fig. 4.18 A matrix SEM micrograph shows some of the filler particles in the continuous 

phase of the CDMC matrix. 

fsenera1purp- iýf Cemmic Dough Aloulding Compomd 

Ceramic matrix DMC or SMC 
+ Manufacturing 

Processes 
Fibre 

Ceramic DMC/SMC 

Flowability during moulding, complex parts 
'liDmperature resistance 200 - 600oC 
Low temperature moulding, low cost 
Moderate properties 

Fig. 4.19 The general concept, requirement and aim of the compounding and moulding Z-1 
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Mixing Blade 

Fig. 4.20 Schematic drawing of a small mixer used for mixing the CDMC. 
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Fig. 4.21 Schematic manufacturing process of the CDMC, through combination of 

reinforcement and resin matrix, and the dough making. 

CDMC 110 

Mixer owrall view 



(Impler 4 Materials and Compounding 

Fio. 4.22 The CDMC maturecland ready to be moulded. 
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Chapter 5 

MOULDING TECHNOLOGY 

5.1 Introduction 

The investigation of the moulding technology for CDMC involved firstly, the compound 
suitability for moulding into useful shapes with existing moulding techniques; secondly 
the determination of the best range of moulding temperatures for achieving reasonable 
mechanical properties; thirdly, the use of data from mechanical (flexure), physical (water 

absorption, density, porosity, etc. ) tests and thermal analysis (DSQ to support the 

approach of using low temperatures to mould the ceramic composites. The determination 

of an optimum range of moulding temperatures was the primary objective of this chapter. 

The optimised moulding condition was assessed by using the standard matrix with both 
15%(vol. ) AR and E-glass fibres and 22.6%(vol. ) mixed glass fibre (AR to E-glass in 

ratio of 12: 10). The whole optimisation scheme with moulding variations in different 

temperatures, pressures and time is shown schematically in Fig. 5.1. Ibe optimisation 
covered 3 groups of process variables: firstly, the matrix is combined with glass fibres 

moulded at temperatures ranging from 99 - 180 'C; the second section involved moulding 
pressures ranging from 0- 17.0 MPa (0-170 Bar) and mould closure times from 30 - 90 

minutes using the standard matrix and 15%(vol. ) AR50/1 chopped glass fibre; the third 

stream, took the matrix with E-glass fibre and AR-glass fibre respectively, moulded at 
temperatures from 130 - 190 T. The further investigation of detailed mechanical 
properties of the matrix with two types of AR-glass fibres (AR-50/1 and AR62/2) is 

reported in Chapter 6 and Chapter 7. 

The principal requirements for the moulding process were identified as: the fibre shall not 
be damaged severely; the material attains sufficient density for optimum mechanical 
properties; the process should be applicable to a variety of fibre/matrix combinations and 
complex shaped products. All the combinations of composite formulation were moulded 
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within the temperature range 99 - 200 'C. The moulding pressure and mould holding time 
were also studied within the range of 0- 17.0 MPa and 30 - 90 minutes. 

For the moulding compound itself, there are two major steps in the moulding process: 
firstly, compound viscosity falls, the material flows to fill the mould and the required 
shape is formed. During the second stage, the viscosity of the compound increases and 
the material consolidates as discussed in Chapter 3. 

5.2 Moulding facility 

A Palamine hydraulic press was used to mould the flat panels which were used for 

mechanical and fire tests. For routine mechanical testing the CDMC was usually moulded 
into plates with dimension of 285 x 285 x 4.0 MM3 . The mass of the material used for a 
moulding ranged from 800 g to 900 g depending on the thickness and density of a plate 
required. Fig. 5.2 shows the mould used for making the CDMC panels. 

5.3 Material flow-ability during moulding 

The moulding compound flows under pressure and elevated temperatures, and benefits 
from reduced matrix viscosity at elevated temperatures. The chopped AR-glass fibre with 

a length of 12 mm, Tex 2450 was used to examine the flow-capability within the mould. 
The process of moulding can be illustrated by the material flowing with glass fibre 

bundles travelling from the centre area to an edge area as shown in Fig. 5.3 - 5.4. The 

glass fibre bundles are rotated when reached at the edge of the mould under the moulding 
pressure. A matrix rich area was formed on the surface of this CDMC plate. The fibre 
bundles can be seen around comers of the moulded part which are uniformly distributed. 
The viscosity of the matrix affects the final orientation distribution mainly through its 

effect on the way in which the mould fills. This in turn, determines the distribution of 
elongational and shear fields (Hull and Clyne, 1996). 

The moulding process begins with weighing the compound, and the charge may occupy 
around about 55% - 75% of the mould surface area before moulding. The greater the 

percentage coverage of the mould chamber, the better, since the longer the distance the 

compound has to travel, the greater the risk of the fibre damage. Nevertheless in real 
production, it is not always possible to maximise the mould cover area, the coverage may 
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also depend on local thickness, overall size and complexity of a product. Many other 
important factors such as compound formulation/flow-ability, moulding conditions, 
property requirements, manufacturing efficiency, etc. have to be considered at the same 
time for a particular product. 

5.4 Preliminary optimisation of process variables 

Three important factors during moulding are: temperature, pressure, and mould closure 
time. The objective was to use measured mechanical and physical properties of specimens 
moulded under different process conditions to determine the optimum process conditions. 

Ibe range of moulding temperatures, pressures and mould holding times investigated 

were from 99 'C - 180 T, 0.0 - 17.0 MPa, 30 - 90 minutes respectively. 

5.4.1 Moulding temperatures 

The influence of moulding temperature, on materials flexural properties, mould closing 
and closure time, water evaporation rate and material's water absorption were investigated 

with a CDMC having AR-glass fibre. All data is generated or based on the moulding 
temperatures from 99 - 180 'C. 

5.4.1.1 Flexural property and density 

The flexural properties and density of the CDMC at the moulding temperatures ranging 
from 99 *C - 180 *C were examined. All load-deflection curves were linear to failure. The 
highest flexural property and density were achieved with the samples moulded at a 
temperature of 150 *C, as shown in Fig. 5.5 for flexural properties and Fig. 5.6 for 
densities. The flexural properties of the material against their densities are shown in Fig. 
5.7, a small increase in density generated at different moulding temperatures would 
produce quite big influences on both strength and modulus. 

The densities of the CDMC when moulded with various moulding temperatures follow a 
similar trend to the flexural properties. Over a temperature increase from 99 to 180 OC, the 
maximum density of 2.32 was achieved at the optimum moulding temperature of 150 T. 
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The maximum flexural strength, at a moulding temperature of 150 *C was about 80 MPa, 

and modulus was about 43.0 GPa. At higher moulding temperatures, the flexural 

properties and densities were reduced. Based on these results, the material's flexural 

strength is approximately proportional to the density. The polished surfaces of typical 
specimens moulded at 120,150 and 180 *C are shown as SEM micrographs in Fig. 5.8. 
When the CDMC was moulded at different temperatures, they exhibited different void 
contents and different interfacial bonding between fibre and matrix. This also appeared to 

affect the level of initial cracldng within the composite. Interfacial phenomena generated 
by different moulding temperatures affects the mechanical properties and this will be 
further discussed in Chapter 6 and 7. 

5.4.1.2 Mould closure time 

To undertake an industrial moulding process it is necessary to know the duration of the 

moulding at different moulding temperatures. This is partially determined by how quickly 
the compound heats up and begins to flow. The time needed to close the mould is defined 
by the time taken for press platens on the top and bottom both touching the male and 
female moulds and the time until the press settled in a stable position where the CDMC 

completely filled the mould cavity. Fig 5.9 shows the time needed to close the mould at 
normal moulding temperatures ranging from 99 - 180 'C. The higher the moulding 
temperature used, the less time would be needed to close the mould. This factor is 

obviously dependent on mould dimensions and details such as the thickness and amount 
of compound charged for an individual mould system. For example at the moulding 
temperature 99 'C the mould would not be fully closed in 130 seconds. But at a moulding 
temperature of 180 *C, only 30 - 40 seconds are needed to close the mould. 

5.4.1.3 Water evaporation 

The water evaporation rate during moulding is related to the moulding temperature. The 

waterremainink, as a percentage of the CDMC after moulding is shown in Fig. 5.10 and 
the time for water to stop being released during moulding is shown in Fig. 5.11. Water 

release rates can be divided into 3 categories: mild, medium and violent which 
corresponding to low, medium, and high moulding temperatures since the speed of heat 

transfer is proportional to the temperature difference between mould and compound. It 

means that to release water from the compound, a certain amount of energy is needed. 
The water retained in specimens moulded at lower temperature less than 130 'C, was from 
30%(wt. ) - 12%(wt. ). Although those moulded at 99 - 120 T can be post-hardened at 
room temperature, the Si-O-Si chain may be difficult to increase in length in the short 
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period. The benefits may be, the formation of a weak interfacial bond between fibre and 
matrix, with non-corroded fibres, producing a considerably higher strength and a higher 

strain to failure. 

e Evaporation at low moulding temperatures (<120 'Q: 

When moulding at a temperature lower than 120 T, less than 20% of the total unbound 
water was released from the compound. The water release process should obey the 

chemical formula as shown in C5-1, although a certain balance will be reached. It is clear 
that the more heat provided at higher temperatures, the more the equilibrium would swift 
towards the right side, allowing more network chains to be connected. 

Si - OH + Si - OH "igh(Toc) ý Si -0- Si + H20ý C5-1 

An advantage of this lower temperature moulding is that there is insufficient energy to 
break the bonds of the sizing layer between the glass and matrix, which does not bond to 

the matrix and produces a weak interface. 

e Medium moulding temperatures (130 - 160 'Q: 

The moisture level in the final moulded compound was from 10.0 - 4.0 %(wt. ) as plotted 
in Fig. 5.10. This shows the proper water contents range for optimising the mechanical 
properties which corresponding to this optimised moulding temperature range. At this 

range, the density of the CDMC was the highest especially when moulded in 150 'C. 
Therefore, based on the general data on densities, flexural properties and moulding time 

requirement, the optimised temperature range for moulding CDMC was defined from 130 
'C - 160 'C. Meanwhile within this temperature range, the time for releasing required 
amount of water is around 50 minutes. This has been shown in Fig. 5.11. This 

optimised moulding temperature range and corresponding moulding time as well as the 

maximum mechanical properties achieved will be further discussed in next Chapter. 

* I-Egh moulding temperatures (160' - 180 'Q: 

For the compound moulded within this temperature range, the water evaporation rate was 
extremely high and can be presented with the form of final moisture level (water remained 
in the final compound which resulted in a material's rapid solidification. A fused interface 

can be observed, indicating a good bonding between fibre and matrix. The large voids 
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formed were due to matrix hardening rapidly and a quick build up of structure. 
Meanwhile, the fibres may act as bridges while the matrix hardens, and shrinks, leaving 

voids as capillaries for further water evaporation. It was noticed that just 20 - 30 minutes 
was needed to evaporate almost all the water. The higher the moulding temperatures, the 
less de-watering time (DWT) needed and resulted in the higher water evaporation rate. 

5.4.1.4 Porosity and water absorption 

The link between void content and moulding temperature follows a similar trend to that of 
densities and mechanical properties, while voids themselves effect the absorption of 

water. Between the moulding temperatures of 130 - 150 *C, the lowest void content and 

maximum density in the CDMC were achieved. The void content was measured using 
image analysis as described in Section 3.3.3. Some typical polished sections of 

specimens have been shown in Fig. 5.8 for the CDMC moulded at temperatures of 120 

I'C, 150 OC and 180 'C. Different morphologies of void formation can be observed with 
the changes in moulding temperatures. Moulding at 150 'C formed dense structures and 
less voids. The specimens moulded at 180 'C had a void content of 6.0%. These polished 
CDMC images (every specimen had 5-7 images taken from different areas) were 

analysed by a computerised image analyser. The relationships among void contents, water 

absorption and moulding temperatures are listed in Table 5.2 for 22.6 %(vol. ) glass 
CDMC and revealed that the smallest void contents and water absorption were obtained 

when the moulding temperatures were between 130 - 150 IC. Within them a pure matrix 

sample without fibre moulded at 130 'C contained voids at the level of 0.88 % and 

absorbed 0.4 - 1.5 % of water. The relationship between the flexural properties, void 

contents and densities for pure matrix are listed in Table 5.3. These results reveal that for 

the ceramic matrix, porosity and density determines the mechanical properties. The 

average void content and water absorption for the CDMC measured in this way were also 

plotted against moulding temperatures in Fig. 5.12. 

A corresponding set of samples were used to measure the water uptake in the just- 

moulded condition. Samples were immersed in water at room temperature for 24 hours 

(see section 3.3.4). The water absorbed is then plotted against moulding temperatures as 

shown in Fig. 5.12. 

The water absorption is changing as void content varies. At moulding temperatures below 
140 'C, the absorption appears independent of void content and is linked only to the 

moulding temperatures. Another interesting phenomena is that although the void content 
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of the CDMC when moulded in the low temperature range (99 - 130 'Q was lower 

compared to the void content when moulded at the high temperature range (160 - 180 'Q, 

the water absorption rates were much higher. This might be due to the incompletion of 
polymerisation of silicate when moulded at lower temperature range. When the specimens 
were moulded below 140 'C, although the void contents were very low and yet the water 
absorption increase dramatically. The explanation might be that at the lower moulding 
temperatures, the cross linking and network formation in the silicates may be incomplete. 

It is possible that the network is accordingly more open and capable of absorbing water 

easily. 

The high absorption with low void contents at the lower moulding temperatures may also 
link to effects of the fibre/matrix debonding which provides the path for water defusing 

into depth of the composites. 

5.4.1.5 Supporting data from DSC for the ceramic matrix 

DSC analysis of the fillers in matrix can provide additional information on any changes in 

the physical and chemical structure for the moulding temperatures ranging from 99 to 200 

*C. The data may also help to explain the thermal behaviour of the panels during fire or 
heat insulation up to 400 'C. The main objective of using DSC for the fillers was to obtain 
thermal information on the raw materials, such as resin, fillers and hardeners, in order to 

predict thermal behaviour for the composites. 

Typical DSC traces obtained from sample fillers are shown in Fig. 5.13. The inorganic 

fillers, such as FW did not give any change within this temperature range. For P60, the 

water was released when the temperature reached 100 'C, followed by very slow water 

evaporation and possibly structural change 0 the way to the highest temperatures. 

The energy absorption curves produced here may represent the water evaporation from 

the fillers which could be added into matrix. This process must also connect with the 

silicate polymerisation in the matrix within this temperature range. This needs to be 
further investigated and explained. 

Although the chemical structure of the fillers when processed in different temperatures 
have to be also confirmed by other facilities such as X-ray or MR, these data may still 
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support the concept of water release from the raw materials within the moulding 
temperature range and from the matrix when subjected to fire or heat. 

5.4.2 Flexural properties of matrix effected by density and porosity 

It is known that CDMC's flexural properties are linked to its porosity / density which has 
been shown above. Since the density and porosity in turn are mainly determined by the 

matrix, it is interesting to investigate the links between density / porosity and mechanical 
properties for the pure matrix. These are examined by testing the flexural properties for 6 

matrix specimens randomly selected from a common moulded matrix panel at 130 *C. The 

specimens reflect the scatter in void contents and also in mechanical properties. For each 
specimen tested in flexure, the material close to the fractured zone was polished, then 

examined by SEM as shown in Fig. 5.14. 

The flexural properties for individual values of porosity / density of the matrix specimens 
are compared in Table 5.3 in the order of densities. Both trends in flexural modulus and 

strength were related to their density or porosity; the higher the density and lower the 

porosity, the higher the flexural properties, especially for the flexural strength. These are 

shown in Fig. 5.15 for the flexural properties effected by porosity and Fig. 5.16 for 

flexural properties effected by density. The densities here are the density of that small 
block close to the fractured area. Since it is impossible to get the exact densities at the 
fractured site, the correlation between a flexural property and its density in some 

specimens are not that perfect. 

The corresponding SEM images for different void sizes in (Fig. 5.14) are from the photo 
number I to 6, the porosity and the size of pores were gradually increased from very few 

pores to some small pores, then to large amounts of big pores. With the pore diameter 
increased, the flexural modulus and strength decreased significantly. When the porosity 
increased from zero to about 15 %, both the strength and the modulus decreased about 40 
%, density was decreased at almost same rate as porosity increased. 
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5.4.3 Moulding pressure and time 

9 Moulding pressure 

The flexural properties and densities of the CDMC with 15%(vol. ) AR-glass 5011 

moulded at different pressures 0.0 - 17.0 MPa (170 Bar) were measured as shown in Fig. 
5.17 - 5.18. Other moulding conditions were kept constant at 140 IC with a holding time 

of 1.0 hour. 

The moulding pressures were in a low and medium range compared with those used in 

the manufacture of polymer moulding composites. Since water evaporation was always 
involved in the process, the pressure applied to the mould may delay water release, and 

can alter the density or porosity of the moulded products, which in turn influences the 

mechanical properties. The flexural properties vs. material densities are plotted in Fig. 
5.19 and show the influence of density on flexural properties under different moulding 
pressures. 

At lower moulding pressures, i. e. 0 to 4.0 NTa , the flexural properties remained 
consistent around 15 - 20 NTa with 15%(vol. ) AR50/1 glass fibre. The materials 

contained a certain amount of pores and the densities were around 1.0 - 1.5. As the 

pressure is increased from 4.0 - 8.0 N[Pa, the flexural strength increased to a maximum 
around a moulding pressure of 8.0 MPa. This was followed by a decrease in properties 

up to around 12.0 MPa. There after both flexural properties and densities were relatively 

constant. The flexural properties and densities are clearly related each other when 

moulded at same pressure and temperature. 

* Mould holding time 

The effects on flexural properties of different periods of moulding time (30 minutes, 60 

minutes and 120 minutes) were examined. It seemed that mould holding time did not give 
much influence on the mechanical properties as shown in Fig. 5.20. 

It is noticed that the longer the moulding time, the better the surface smoothness. 
Observation found that the CDMC panel was distorted by the shrinkage on cooling for 

panels moulded with less than 30 minutes holding time. This may be caused by a 
inadequate time for sufficient structural cross link and water to release. 
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5.5 Post hardening 
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Since the curing temperature was relatively low (from 99 to 180 'Q, it was impossible to 
release all the water within a short time especially at the lower moulding temperatures. 
Therefore, for products moulded at the low moulding temperatures, post curing becomes 
important for property control. 

Post-curing characteristics of the CDMC moulded at 99 T have been examined by 

measuring weight loss after moulding as panels produced at this temperature had highest 

residual water content. Water content of moulded panels at room temperature was 
constantly examined. With continuous evaporation at room temperature after moulding, 
the panel surface from plane and smooth gradually became as an rough surface with 
shrinkage marks around the glass bundles. Fig. 5.21 shows the average water released 
from CDMC moulded at 99 'C. The evaporation or absorption of the moisture seemed 
reached balance and kept stable after 28 days. 

An example of the CDMC moulded at 99 T, shows that water evaporated from the 

compound during moulding for one hour was just about 5% of total water contained. The 

water percentage reduced from 27%(wt) to 22.6%(wt). This continuation of the low 

moulding temperature and the post curing process caused extreme shrinkage and 
distortion to the CDMC over a period of time, as shown in Fig. 5.22. 

5.6 The matrix shrinkage during moulding 

Matrix shrinkage has been found to be one of the important reasons for the formation of 
the voids, micro-cracks and product distortion during moulding, which give changes to 

mechanical and physical properties. Nevertheless, all ceran-fic materials presented the 

steps of particle formation, dimensional shrinkage and inter neck linkage. One of the 
CDMC's SEM micro graph and a diagram are shown in Fig. 5.23 and illustrate this 

general process and schematically in Fig. 5.24. For the CDMC panels, the higher the 
moulding temperature used, the more voids are left. 

The smooth voids and gaps might be caused by a surface tension during water release 
from the compound which raised the stress concentration from the action of capillary 
forces. It becomes operative when pores started to empty by a liquid-air interface in the 
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form of menisci distributed in the pores of the drying matrix which is surrounding fibres. 
There are probably two steps of volume shrinkage or plastic deformation and crack 
generation. 

At first stage, the decrease of a volume was equal to a volume of evaporated liquid/water 

at temperature above 100 T. The free water which was not chemically combined with 
matrix might start to release into the pores produced by the matrix curing shrinkage. This 

shrinkage was partly caused by surface tension of water in matrix and neck for matrix 
among and around outside of individual fibres. 

There was enough liquid to fill the pores at the first stage during moulding and no liquid- 

air interface occurred and no capillary forces were operating. During the second stage 
with opening the mould for breathing, the water gradually released from the matrix 
system, the water volume was reduced. With the big volume of water loss, numerous 
concave were formed in the pores, and the capillary attraction presses the particles or 
around fibres together. For particles and fibres in contact, the volume reduction might 
result first in an elastic deformation of the system and then when the system becomes 

rigid, an irreversible, collapse or cracking may occur during drying, owing to release the 

stress concentration under the press pressure. These stresses generally produced 
fragmentation of the gel (cracking unless special precautions were taken). In the CDMC 

composites, it can be more complicated because the fibre/matrix interface assists the 
formation of voids and shrinkage cracks. And this cracking process is going to be 
discussed further in Chapter 6. 

5.7 Initial optimisation of the moulding conditions 

The optimisation of moulding conditions has concentrated on moulding temperatures in a 
range of 99 to 180 'C. When the temperature was higher than 160 *C, the surface of glass 
fibre would be chemically active and forrn a better interface with the matrix. This will be 
discussed more in next chapter. When the moulding temperatures are lower than 120 'C, 
the water evaporation rate and the matrix hardening process are too slow for a standard 
moulding time (60 minutes) and around 20 %(wt. ) water still remained in the moulded 
panels. Although the possibility of producing a high strength material is greater at lower 

moulding temperatures due to the intact fibre - matrix interface, the surface roughness and 
dimensional instability after moulding, made them difficult in practice. Therefore, 

considering all the factors and properties they can achieve, the best moulding temperature 
should be in the range of 130 'C to 150 'C. 
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The range of the moulding pressure used was from contact moulding to 17.0 MPa, and 
this produced the panels with different densities. Low to medium pressures were 
recommended for the energy and safety considerations. The mould holding time of one 
hour is sufficient for a good moulding practice. The optimised moulding condition was 
listed in Table 5.4 for the CDMC. 
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5.8 Summary 

The CDMC is mouldable using selected moulding conditions: 

1) At lower temperatures 99 - 120 T, quality products were difficult to obtain because not 
enough energy was supplied to drive off water unless post-curing/hardening was 
employed. This was also linked to distortion of products if proper fixture was not 
employed after moulding. 

2) At temperatures 130 - 150 'C, the moulded products had a smooth surface finish. In 
this range, the moulding pressures can give contribution to control the materials' voids 
content, density and surface quality, especially within the pressure range from 8.0 - 12.0 
M[Pa. The voids remained at a minimum at the temperature range 130 OC - 150 OC. Some 

shrinking residual stresses generated micro-cracks around fibre and fibre bundles, 

providing opportunities for fibre sliding, pull-out during its mechanical tests. 

3) By increasing the moulding temperatures, the time for closing mould was reduced. But 
there was an increase in porosity which is in a form of smooth voids. This resulted in a 
better interfacial bonding and brittleness. The cause of this porosity phenomena is due to 
matrix shrinkage and rapid hardening of the structure in material at the elevated moulding 
temperatures. Some panels moulded in different conditions have been illustrated in Fig. 
5.25 for showing this success of moulding process. 
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Table 5.1 Pre-designed moulding condition for the CDMC. 

tems 

Moulding technology 

Temperature, OC 99 - 180 
Pressure, MPa 0.0 - 17.0 (0 - 170 Bar) 

Mould holding time, minutes 30 - 190 

Table 5.2 Void content of the CDMC moulded at different temperatures examined by an 
image analyser. And the related water absorption is listed as well. All listed values were 
mean values; panels were moulded at 130 - 180 'C (Pm = 8.0 Wa for 60 minutes). The 

specimens were polished and the mean values of 5 specimens for each temperature were 
calculated. 

Moulding temperature 
(0c) 

Voids area Frame area Area fi-action of 
void content % 

CDMC water 
absorption, % 

180 1.246 19.265 5.93 % 4.9 
170 3.883 24.254 12.6% 7.8 
160 0.666 20.405 3.25% 1.8 
150 0.196 16.611 1.18 % 0.49 
130 0.196 20.405 0.45% 1.92 

Pure matrix (130 'Q 0.145 16.611 0.88 % 0.40-1.50 
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Table 5.3 The relationship and comparison among individual porosity / density of the 

matrix specimens and properties are compared. The porosity were obtained by the 
technique of photo-image analysis. 

Single specimen 
of Moulded 

product of the 
matrix system 

Porosity(%) Density Flexural 
strength 

MPa 

Flexural modulus 
GPa 

No. 1 0.01 2.30 89.2 45.00 

No. 2 2.1 2.30 53.8 34.50 

No. 3 5.6 2.28 55.4 28.70 

No. 4 8.2 2.17 51.0 32.20 

No. 5 10.9 2.03 49.0 28.47 
No-. 6 14.7 1.99 49.7 25.18 

Table 5.4 The primarily optimised moulding conditions for the moulding compound. 

Item Moulding condition (optimised) Unit 

Tempemture 130.0 - 150.0 CC 

Pressure 8.0 NTa 

Mould holding time 60.0 Minutes 
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Matrix 

E-Glass fibre 

AR-Glass ribre 
(5011) 

Feasibility 
of moulding: 

Moulding at 
99 - 180 OC 

Flexural 

M UlIddilmv Matrix 
Moulding pressure: 

ý U11 dI 11 U1 -0- +0 -17.0 MPa 
Physical 

up IJ Uýu 
AR-Glass properlit 

(50/1) Mould holding time 
Chapter 5 30,60,120 min. 

---- -- --------------- 
Chapter 6 

+ E-Glass fibre 
-(12-mm-)j---*" Moulding at: 

Matrix 
130,150,170,190'C 

+ AR-glass (50/1,12 mm) 
Moulding at : 
130,150,170,190 'C 

Fig. 5.1 Schematic flowing chart shows the routes of optimisation of moulding 

conditions through chapter 5 and 6. The CDMC with mixed glasses and AR-glass and E- 

glass were moulded at different temperatures, pressures, and mould closure times. ' 

ii 
Fig. 5.2 The CDMC and the mould used for making panels. 

rz 
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Fig. 5.3 Schematic view of the compound flow during the start and the end of' the 

moulding at elevated temperatures. 
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Fi- I Z11.5.4 The optical micro-graph ol'a CDMC with flow pattern of'chopped 1"bre hUIIdICS 

throughout the cross-section of moulded panel with thickness of 3.1 rnrn. The orientation 

pattern of the fibre bundles indicated their travelling experience as a horizontal levelling 

distribution. 
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Fig. 5.5 Flexural properties of the CDMC were obtained under the moulding temperature 

from 99 'C - 180 'C (Pm = 80 Bar for 1.0 hour). The CDMC was with 22.6 %(vol. ) glass 

fibres (length 12 mm). 
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Fig. 5.6 Density (g/cm') distribution of the CDMC with the moulding temperatures from 

99 IC - 180 IC (Pm = 8.0 MPa for 1.0 hour). The CDMC was with 22.6%(vol. ) glass 
fibre (length 12 mm). 
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Fig. 5.7 The relationship between the flexural properties and densities of the CDMC. The 

flexural strength and modulus with "*" are the flexural properties of the pure matrix. 
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A: 180 'C 
B: 150 'C 
C: 120 'C 

MOLII(Iillvl'7 tCCIIIIOIOgy 

Fig. 5.8 SEM analysis of polished sections of' specimens moulded at different 

temperatures, frorn top ISO 'C (A), 150 T (B) and bottom 120 'C (C), CDMC is with 
AR-Oass (50/1) glass fibre. 
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Moulding technology 

Fig. 5.9 Time needed to close the mould at moulding temperatures from 99 - 180 T for 

the CDMC with 22.2%(vol. ) glass fibre and the moulding pressure used was 8.0 MPa. 
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Fig. 5.10 Water remained [%(wt. )] in the CDMC after moulding at different moulding ZD 

temperatures. 
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Fig. 5.11 Time (min. ) to achieve equilibrium water content during moulding at the given 
moulding temperatures. The range for optimisation of moulding temperatures (ROMT) 

can be determined if 60 minutes is the moulding period. 
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Fig. 5.12 The illustration of average voids contents and water absorption vs. moulding 
temperatures. The materials moulded at 99 - 180 'C (P., = 8.0 MPa for 60 minutes), with 
22.6%(vol. ) glass fibre. 
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Fig 5.13 Results of DSC energy absorption of the fillers used in this work. They were 

examined in the temperature range from 45 'C to 400 'C. Materials are P60, MT, Millicarb 

and FW325. 
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Fig. 5.14 SEM photographs of flexural specimens of pure ceramic matrix, No I to 6 is 

corresponding to their fractured specimens in Table 5.3. The matrix panel was moulded at 
temperature 130 ' (P,,, = 8.0 MPa, 60 minutes). 
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room temperature. The CDMC with 22.6%(vol. ) glass fibre moulded at 99 'C for one 
hour. 
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Fig. 5.22 The illustrated panel was moulded at 99 'C and roorn temperature post-cured. 
Distortion and dimensional shrinkage was observed after a mouth. 
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Fig. 5.23 The typical matrix shrinkage among fibre bundle in specimen moulded at 170 

'C. The insert section shows a particular fibre surrounded with gelled ceramic matrix. 
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Fig. 5.24 Capillary forces during drying of a wet particulate material around glass fibre. 

produce inter-linking among fibres by the sol-gel formation of ceramic matrix. 
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Fig. 5.25 Some of the moulded CDMC panels. They were all moulded at optinlised 

moulding conditions. 
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f" 7- 

Chapter A- 

MECHANICAL CHARACTERISATION 

6.1 Introduction 

The general mechanical characteristics of the CDMC investigated and discussed in this 

chapter are affected by fibre volume fractions, fibre lengths and types, moulding 
conditions and fibre-matrix interfacial properties. 

A schematic diagram showing the mechanical testing plan is presented in Fig. 6.1. 
Evaluation of mechanical properties for the CDMC with different fibre (AR) volume 
fractions and moulding temperatures (both AR and E-glass) is a major task in this 
Chapter. Flexural, tensile and impact tests for the CDMC have been carried out for the 

mechanical characterisation and for an optimisation process involving the compound 
formulation. All mechanical testing was performed 28 days after moulding, unless stated 
differently. 

6.2 Results of general mechanical properties 

The mechanical properties of the CDMC were varied with moulding conditions, glass 
fibre types and volume fractions. The properties were initially assessed by using flexural 

tests for E- and AR-glass fibre composites, with further tests being undertaken using 
tensile, and instrumented impact tests for only AR-glass fibre 5011 composites which 
exhibited superior properties to those with E-glass fibres. 

6.2.1 Flexural properties of the E-glass fibre composites 

The flexural stress-strain curves for the CDMC with 15%(vol. ) E-glass moulded at 130 - 
190 'C are presented in Fig. 6.2. 'nie materials exhibit linear flexural stress-strain curves 
with the exception of the compound moulded at 130 'C. As moulding temperature 
increased towards 190 'C, the flexural strengths decreased. It has already been shown in 
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Chapter 5 that moulding at temperatures below 130 T resulted in high water absorption 
and water retention linked to the Probability of incomplete network formation. On this 
basis, therefore, it can be assumed that the optimum moulding temperature range for E- 

glass composites is around 130 'C. 

The variations in modulus were less systematic. Modulus increased as the moulding 
temperature was increased from 130 T to 150 T but decreased from 150 T to 190 T. 
The changes in modulus and strength are compared in Fig. 6.3 and the corresponding 
tested specimens are shown in Fig. 6.4 with a clear brittle failure when moulding 
temperatures exceeded 150 *C. 

6.2.2 Flexural properties of the AR-glass fibre composites 

The moulding temperature dependence of AR-glass fibres (5011) composites was 
investigated by using a CDMC with 15%(vol. ) AR 5011 glass moulded over a temperature 

range 130 T- 190 'C. A representative group of the flexural stress-strain curves is 

presented in Fig. 6.5. It can be seen that specimens moulded at 130 T exhibit a high 

strain at failure. An overall comparison of flexural properties of the E-glass CDMC with 
different moulding temperatures is shown in Fig. 6.6. For this group of compounds, the 

modulus increases with moulding temperature until 170 T and then falls at 190 'C. 
Strength rises from 130 'C to 150 'C, but then begins to fall off. Fig. 6.7 shows the AR- 

glass specimens tested in flexure with moulding temperature changes. Fibre pull-out in 

these AR-glass fibre composites can be observed when the moulding temperature is 
below 150 OC. 

The moulding temperature range for the best flexural properties with AR-glass fibre 
CDMC is in the range of 130 - 150 T which is slightly higher than that of E-glass fibre 
CDMC. 

6.2.3 Comparison of the E-glass and AR-glass fibre composites 

The flexural stress-strain curves of the E and AR-glass fibre (5011) composites are 
compared in Figs. 6.8 - 6.11 for moulding temperatures of 130 T, 150 IC, 170 T and 
190 T. For E-glass composites, the flexural stress-strain curves are linear until failure 

with the exception of compounds moulded at 130 T. The moduli of both fibre 

composites are similar at the lower moulding temperatures, but AR-glass is significantly 
stiffer and stronger for the composites which were moulded at the temperatures over 
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150 'C. The comparison of composite strains at failure for both E- and AR-glass is fisted 
in Table 6.1. 

A general comparison of strength and modulus of the CDMC with AR and E-glass fibre 
for the moulding temperature range 130 - 190 T is presented in Fig. 6.12 - Fig. 6.13. 
The AR -glass composites exhibit superior properties at all moulding temperatures apart 
from 130 'C. 

The mechanical properties of the E-glass CDMC tend to be better at lower moulding 
temperatures (<130 'Q; AR-glass CDMC can achieve better properties at slightly higher 

moulding temperatures (140 - 150 *Q for both flexural modulus and strengths. Overall 

the best moulding temperature for the material was selected at the range of 130 - 150 9C 

which was a compromise of material's water release, product appearance, mould-ability, 
ductility and final mechanical properties. Therefore, afterwards, most of specimens used 
for tests of fibre volume fraction and fibre lengths were moulded at 140 "C. The 

specimens moulded at this temperature normally exhibited good dimensional stability and 
appearance, and did not show evidence of over heating or excessively strong bonding 
between fibre and matrix. 

6.2.4 Fibre volume fraction 

Through the flexural property comparison, the AR-glass composites were found to 

possess better mechanical properties compared to the E-glass fibres composites. 
Therefore, further investigation such as volume fraction of glass fibre and fibre length 

was concentrated on the AR-glass fibres (5011 and later on 62/2). 

Volume fractions of the AR-glass fibre in the compound were prepared within a range of 
5- 22.6%(vol. ) for the AR-glass 5011. A further comparison of AR50/1 and AR 62/2 

glass composites will be discussed in following Chapter. The flexural strength and 
modulus are shown in Fig. 6.14. The samples were moulded at 140 T. The strength 
increased consistently with increase in fibre volume fractions, but the modulus was only 
slightly changed. 
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6.2.5 Retention of the flexural properties 

The flexural property retention for the CDMC was studied in two steps: firstly, the 
flexural properties of the ceramic matrix were tested over a period of two months, and 
then the tests extended to its composites later for a period of one year. 

The data for flexural property retention in Fig. 6.15 is for, pure matrix. And the data in 
Fig. 6.16 is for the CDMC with 22.6%(vol. ) of mixed glass fibre. For matrix, there was 
a very slight increase in both stiffness and strength with storage time. For the composite 
CDMC, properties exhibited a period of initial fluctuation but showed a promisingly 
stable value for the stiffness and strength after approximately 70 days. 

6.2.6 Tensile properties 

Tensile tests in this chapter concentrated on examining the variation of properties due to 

moulding temperatures and fibre volume fractions, for compounds with AR50/1 fibre. 

9 Moulding temperatures 

The effects on the CDMC's tensile properties by moulding temperature were investigated 

over the range of 99 - 180 'C. Typical tensile stress-strain curves are presented in Fig. 
6.17 with the key data in Table 6.2. It can be noticed that the modulus of the material 
increased with moulding temperatures until 150 "C. However, the tensile strength 
remained approximately constant until 180 'C, while strain to failure decreased 

progressively with increase in moulding temperatures. 

* Glass fibre volume fraction 

The effects of volume fraction on tensile properties of glass fibres (5011) moulded at 140 
'C are presented in Fig. 6.18. With a glass fibre volume fraction increase, both tensile 

strength and strain to failure are increased steadily as shown in Table 6.3, but modulus 
decreases. 
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6.2.7 Impact properties 

Instrumented falling weight impact tests for the CDMC were carried out and some 
representative force-time and energy-time histories for a typical ceramic moulding 
composite with AR50/1 glass fibre are shown in Fig. 6.19. The typical force-time curve 
shows that the load rises with time until to the point T at which a fracture was initiated. 
As the force continues to increase to the maximum point 7, cracks may propagate and 
followed at 'D' where the striker penetrates the specimen. The specimen continues to 

resist the striker until complete fracture. The energy-time history curve shows how energy 
was absorbed during the impact test. 

The ceramic matrix contributes very little in the development of impact energy. But the 

matrix in a composite can influence the damage mechanism in impact by the way of 
delamination, debonding and fibre pull-out, which are dependent on fibre/matrix 
interfacial shear strength, which is controlled by moulding temperatures. Therefore, the 

main testing results were related to the moulding temperatures and glass volume fi-actions. 

* Moulding temperatures 

The force-time history and energy absorption of the CDMC with 15%(vol. ) glass fibre 

moulded at different moulding temperatures of 130-190 'C are presented in Fig. 6.20 and 
Table 6.4. 

Over the range of moulding temperatures used, almost all the composites presented brittle 
failure although the amount of energy absorbed was the highest at the lowest moulding 
temperature. 

9 The volume fraction of glass fibre 

The energy absorption of the materials with different volume fractions of glass fibre are 
listed in Table 6.5. These indicate that the more glass fraction in the material, the better 
impact properties can be achieved as shown in Fig. 6.21. The force-time curve was a 
double peak for the higher glass volume fraction CDMC, but not for lower volume 
fractions. Peak force is not a linear function of volume fraction of the glass fibre, i. e. the 

peak force of 15%(vol. ) CDMC is higher than the peak force of 22.6%(vol. ) CDMC 

although the latter absorbed more energy. 
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Impact properties are a reflection of the material toughness. Here since the glass fibre 

volume fraction had an influence on the impact properties. The material toughness should 
also be related to glass fibre volume fraction in the composite. Specimens were shown in 
Fig. 6.22 with 15 %(vol. ) AR50/1 glass fibre which were completely shattered. And Fig. 
6.23 shows the impacted CDMC with 22.6%(vol. ) glass fraction shattered in few pieces. 
The composites with lower volume fractions of glass fibre shattered in a similar way but 
into much smaller pieces compared with the high volume fraction composite and was 
dffficult to coHect them after test. 

6.3 Discussion 

6.3.1 Chemical property of the E-glass CDMC 

E-glass fibre is more sensitive to alkali attack at elevated temperatures compared to AR- 

glass. Corrosion of glass has been studied previously: mostly with soda-silica glass 

using various concentrations of NaOH water solutions (Charles, 1958) or acid (Metcalfe 
AG and Schmitz GK, 1972) as the reaction media. The former also used extracts from 

metallic silicate-based cements (with pH > 11) in ambient temperatures as the reaction 
media. In this research, the corrosive condition for glass fibre encountered during 

moulding is high temperatures (> 100'C) and high pH (>I 1). Information regarding to 

glass fibre in corrosive conditions at both high temperature (>100 'C) and alkaline 
(pH>l 1) condition has not been reported. 

The reduction in strength for the E-glass composite was observed in their flexural, tensile 

properties when the moulding temperatures were higher than 140 'C (Fig. 6.2 - 6.3). 

There is evidence from SEM studies on the CDMC fracture surfaces, that fibre corrosion 
has occurred at the higher moulding temperatures (i. e. 160 "C) for this composite. It is 
illustrated by Fig. 6.24 which shows pitting on the fibre surfaces. It is believed to be due 

to such fibre corrosion. 

Aluminium-silicate networks are inherently non-stable in an alkaline medium and glass 
corrosion in alkaline media at elevated temperatures is inevitable. The corrosion observed 
in the E-glass fibre CDMC moulded at 160 'C is very similar to the outer surface of glass 
fibre exposed to boiling water for extended time, which showed a degree of pitting 
corrosion (Hogg, 1981). The pitting corrosion happened on particular area of the surface 
of the E-glass fibres was indicated by arrows. This alkaline corrosion may cause 
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significant changes in the interface by damaging the surface of glass fibre. It also 
weakens the glass fibre considerably. 

The strong alkali medium (Na+-OH-) constitutes a high pH environment at elevated 
temperatures, which enables the dissolution of the glass fibre silicate networks. The 

equilibrium for the following chemical reaction is dependent on the pH and will be driven 

towards the right. 

[-Si: 
- 0 -Ne] +H 20 <=> [-Si- OH ]+ NeOH - 

C6-1 

The build up of Off further increases pH and can accelerate attack of the silica network 

as shown in C6-2: 

0 
I 

i-OH +[ 4HO- 

O-S 

1i 

-OH + 
[HO 

-sli OH 
] 

sc) 1 
11 

u-c; lwi u 

C6-2 

The chemical reaction in an alkali environment involves a breakdown of the silica network 
by the OH- ions, and eventually a congruent dissolution of all species in the glass. But at 
lower moulding temperature <130 'C, there is no observed evidence that severe corrosion 
happened to the E-glass fibre by alkalinity. 
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6.3.2 Mechanical properties of the AR-glass CDMC 

When AR-glass fibre was used, they produced inferior results at the lower moulding 
temperatures (<130'C). When the temperature was raised to higher than 160 'C, the 

possible weak interface between the fibre and matrix started to disappear (interfacial 
bonding strength increased). This led to reduced strain before failure (Table 6.1 and 6.2). 

Both flexural and tensile stress-strain curves of the CDMC with the AR-glass fibre 

revealed an apparent ductility in the material processed at the lower moulding temperatures 
(i. e. 130 'Q, but the materials became gradually brittle with rising moulding 
temperatures. For example, compared with the CDMC moulding at <130 'C, a shorter 
fibre pull-out level was observed in a tensile failed section of AR-glass CDMC moulded at 
150 'C in Fig. 6.25. The insert shows the same specimen with much lower 

magnification. Although a higher moulding temperature gives benefits in production 
efficiency due to fast water release, it may not give enough time to allow the material to 
harden properly or to build up step by step. This may also lead to the production of a 

pores and a weak matrix and give more 'chance for the alkali to attack glass fibre 

vigorously. 

6.4 Mechanical properties ýffected by fibre volume fraction 

The flexural, tensile and impact testing results proved that all mechanical properties are 
influenced by the volume fractions of glass fibre. The flexural properties of the composite 
with 22.6%(vol. ) Cem-FIL AR50/1 glass reached a strength of 82.0 Wa as 

shown in Fig. 6.14. The flexural modulus of the CDMC kept stable. 

Compared with polymer composites, the tensile properties of the CDMC were less 

effected by the volume fractions of glass fibre. The matrix modulus, EcDmc. is about 37 

GPa and the modulus of AR-glass fibre (EAR) is about 80 GPa . rne EARf is about 2 

ECDMCm * For phenolic or polyester DMC, the Ný (76 GPa) is around 20 Mm which is 

about 2-4 GPa for the pure resin cast plate. The expectation is to increase the strain to 
failure under the mechanical load in order to reduce the influence of flaws or defects 

remaining in the ceramic. Both stress and strain at failure of the CDMC were enhanced 
with an increasing fibre volume fraction as shown by the tensile results, in Fig. 6.18 and 
in Table 6.3. No significant improvements in the modulus were observed over the range 
of additional fibre fraction based on both tensile and flexural properties. Further increases 
in the fibre volume fraction could cause an increase in porosity in the composite owing to 
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the difficulties encountered in mixing during manufacture and in material flow during 

moulding. 

The specimens with an increasing in volume fraction of glass fibre did show a significant 
improvement in the maximum strain at failure in comparison with the pure ceramic matrix. 
It was also suggested by Aveston et al. (197 1) that the cracking strain of a ceramic matrix 
increases with fibre content and the presence of fibres delays the onset of matrix cracking 
in proportion to the fibre volume fraction. 

6.5 Damage processes 

Several factors contributed to the fracture mechanisms operating in the CDMC specimens 
including interfacial shear strength and residual stress. 

6.5.1 Influence of the moulding temperatures 

Some features of the damage behaviour are common to all the specimens moulded at the 
temperature range from 99 T to 180 T. Fig. 6.26 schematically shows the 3 different 

types of failure behaviours observed during the flexural tests. 

Moulded at 160 - 180 "C, specimens presented a typical ceramic brittle failure (Fig 6.27- 

specimen moulded at 180 'Q on the fracture surfaces. SEM micro-graphs indicate the 

good bonding between fibre/matrix. 

A tougher mode of failure was observed with panels moulded at 99 - 150 *C as shown in 
Fig. 6.28 and Fig. 6.29. Panels moulded at 99"C have complicated multi-delaminations. 
This might be caused by chopped fibres in the CDMC being distributed in two 
dimensions due to a pattern formed by flow to the cavity during moulding. More 

extensive fibre pull-out can be observed in these cases than those of specimens moulded 
at higher temperatures. 

SEM analysis of polished specimens moulded at 99,120 and 150 *C, illustrated pore link- 

up and apparent fibre debonding probably induced by matrix shrinkage before mechanical 
tests. Typical partial matrix cracking around the fibres is shown in Fig. 6.30. The 

specimen moulded at 150 'C and the circumferential crack patterns are an indication of 
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residual stresses arising from a fibre/matrix incompatibility or a mismatch during cooling 
after moulding in the interface owing to the difference in coefficients of thermal 
expansion. These could result in a lower interfacial shear strength due to the partial 
separation of fibre and matrix. 

The partial separation between fibre and matrix may result from difficulties in removing 
the size coatings from the fibres at the lower moulding temperatures. The experimental 
works and SEM studies on the sizing surface of the glass fibre proved that the size on 
glass fibre would be pealed out partially when the glass fibre under pH >1 1 media and 99 
"C for 24 hours. This is shown in Fig. 6.3 1. 

Residual size could cover the surface of the fibre and act as a barrier layer to prevent the 
interaction between the fibre and ceramic matrix. When the moulding temperature was 
higher than 160 T, the sizing system, composed of lower molecule weight polymers, 
may be assumed to be washed away, for it could not withstand the water/vapour 
(Plueddemann and Page, 1982; 1987) and an additional strong alkaline attack. Thus the 

glass fibre would present a bare surface to the silicate matrix slurry, and the fibre would 
become a nucleation point for accelerating the processes of the silicates polymerisation. 
This would explain the high bond strength as the moulding temperature increased. No 

evidence of fibre-matrix separation was found at the higher moulding temperatures as 
shown in Fig. 6.32. 

6.5.2 Local fibre strength concentration 

In general, composite consolidation degrades fibre properties and it becomes necessary to 
devise procedures that allow the determination of the characteristics of fibre strength S, 

and a shape parameter for fibre strength distribution to be evaluated relevant to the fibres 

within the composite (Evens and Zok, 1994). In polymer composites, the matrix can be 
burned or dissolved without further degrading the fibres and then the bundle strength can 
be measured (Prow, 1986). But in ceramic composites, this process is impossible. An 

alternative to assessing strength in-situ uses study of the fracture surfaces of brittle fibres 
in brittle matrix. 

The glass fibres in the CDMC SEM micro-graphs exhibit mirror zones on real fracture 
surfaces. A serni-empirical calibration has been developed that relates the mirror radius, am 
to in-situ individual fibre tensile strength, Sc 

, given by (Evens and Zok, 1994): 
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S, = 3.5(Ef rf /a )1/2 

E8-1 

If AR-glass fibre Ef = 80 GPa, 

S=3.5) 
Fo I'f 

ý a. 

a 

E8-2 

Where rf is the fracture energy of the fibre (Jamet, Lewis, Luh, 1984 and Eckel and Bradt 

in 1989), by measuring many fibres and then plotting the cumulative distribution, and the 
characteristic in-situ fibre strength, S, can be ascertained. This fi-acture energy can be 

difficult to obtain in the case of chopped fibres randomly oriented in the CDMC. Some of 
these fibres have been displayed in Fig. 6.33 (A, B and Q. Table 6.6 shows the 

relationship between mirror diameter a. and the moulding' temperatures. Fig. 6.34 

schematically shows the fracture mirrors on top of the fibres. 

6.5.3 Residual stresses 

Analysis of the matrix SEM micrographs shows that although those voids in the 

specimens moulded at more than 170 T varied in size and shape, there was no crack 
connected with them. The porosity allows shrinkage to be accommodated and hence no 
matrix cracking is nucleated. For the parts moulded at lower temperature such as <160 *C, 

cracks were observed both before and after the specimens were tested. There are three 
different matrix conditions: 

The specimens moulded at 160 - 180 'C: significant level of pores/voids in the 

specimens, but almost no cracking associated with them. 

The specimens moulded at 130 'C - 150 *C: contained few voids. There were also a 
few cracks associated with these voids which connected with the partial interfacial 
debonding. Almost all voids were connected with fibre dense zones. 
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The specimens moulded at the temperature 99 IC - 120 'C: presented more cracking 
associated with fibre bundles and interfacial debonding. The cracks could be induced 
by residual stresses resulted from the mismatch in linear thermal coefficients of the 

constituent. This may be accentuated by incomplete curing of the matrix structure 
which is not strong enough to provide resistance to stress concentrations. 

Depending on the types of coupling agents, the bonds produced between fibre and sizing 
system only have limited resistance to water even at the ambient temperature. Previous 

work showed (Plueddemann, 1978,1988) that silane could delay the time of failure in 

water by over-thousand-fold, but all bonds would ultimately fail in the extensive tests. 
The differences among fon-nulations in terms of fibre and matrix were not that 

tremendous, but there were still two aspects have to be considered that impinge on stress 
that builds up in the material. 

Glass fibres have a dense structure (density: -2.7). The density of the matrix is 

constantly changing due to water evaporation from about 35 - 40 %(wt) to about 25 to 
0 %(wt. ) which itself also varies according to moulding temperature. Therefore, the 

thermal coefficients of expansion of the matrix during cooling must change and result 
in stress concentration around fibres. The silicates depositing with water evaporation 

and matrix shrinkage, genemted matrix cracks. 

When moulded below 160 *C, the size may protect the fibre from the corrosive matrix, 

which may produce lower bonding strength. The adhesion between fibre/matrix is not 

strong enough to prevent cracking, because the sizing system only provides a weak 
interface. When the interfacial strength of a fibre / matrix bond was exceeded by stress 

concentration produced by differences of coefficient of matrix expending/shrinking 
during a moulding or cooling, the cracks would occur around individual fibres or fibre 

bundles in the matrix. This has been proven beneficial for improving the toughness of 
the composites by many researchers (Ashby 1978; Aveston, Kelly 1973 and Haug and 
Schafer 1994). 

In addition to the different thermal coefficients and the expansion/shrinkage of the matrix 
and glass fibre, the moulding process caused a water evaporation resulting in a large 

amount of volume reduction or shrinkage. The "clamping" of the fibres by the matrix 
was therefore conceivable. The stress generated by shrinkage of matrix, involving the 

water release process, therefore, needs more consideration. Here we can firstly work out 
the stress generated by the difference of thermal expansions between matrix and glass 
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fibres. The matrix shrinkage stress generated around the glass fibres may be solved in the 
future. 

The difference in coefficients of thermal expansions between fibres and matrix leads to 
observable residual stresses in the coLnposite specimens as a result of cooling from 

moulding to ambient temperaturesCPhiil 
Elp Alc 

_ýP78) 
derived a expression for residual 

stresses in unidirectional brittle matrix composites (E6-3) and it may be used to work out 
of the thermal expansion of the composites as a brief indication of the thermal expansion: 

Ef Vf (a, - af )AT 
E6-3 F+ Vf (Ef / E, - 1) 

If we use T to represent Efq Vfj and E., as following in E6-4, 

v=- 
Ef Vf 

E6-4 
1+ Vf (Ef / E,,, - 1) 

T is changes with Vf , the relationship between T and fibre volume fraction Vf is listed in 

Table 6.7, which makes the following calculation easier if we have material's thermal 

data, a. and af (coefficients of thermal expansions of matrix and glass fibre). T is a 

number which connects with material's composition and elastic properties (unit GPa) for 

the interfacial area between glass fibre and matrix. If the elastic properties of fibre and 
matrix are fixed as in the situation of the CDMC, then: 

v= f(vf) E6-4.1 

Therefore, the residual stress within the CDMC can be determined by material's 
composition, elastic properties and fibre/matrix thermal properties. Then E6-3 could be 

simplified as: 

a,,., id., = V(a,,, - af)AT E6-5 
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a E6-5.1 

Where Vf is the fibre volume fraction, cý, ocm are coefficients of the thermal expansions 
of the fibre and matrix, Ef and E,,, are the elastic modules and AT is the temperature 
difference on cooling from the processing temperature to ambient temperature. 

For our particular case of the CDMC, the matrix and fibre and other data are as indicated 

as following: 

Ef = 80 GPa, 

Vf = 0.0%, 5 %, 10%, 15 %, 22.6%(vol. ), 

AT = moulding temperature 200 -- 20"C = (200 + 273)K - (20 + 273) K. 

If average value of matdx : 

E. = 35 GPa, is taken for the pure ceramic matrix, 

From E6-5, for different volume fraction of glass fibre the(yresidual would be changed if 

we just consider a single fibre or a single fibre bundle, it could be worked out as listed in 

Table 6.7. It is indicating that the less fibre involved in the materials, the less residual 

stress remained after the moulding or heat treatment. 

a, " 
Therefore, the lower the fibre volume fraction, the smaller the resid a) , and the lower the 
moulding temperature, the smaller thearesidual 

*The coefficient of thermal expansion (x. 
has been measured by NPL for the CDMC in the range of 50-200 'C and the result is 
6. OxlO' K1. Here, if it is in the temperature range of 50 to 200 'C (CNMT0918/2932): 

For glass fibre: af = 3x 10-6 K1 (50 to 200 
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For the matrix (X. = 6xlO-' K' (50 to 200 

According to the standard theory (Fishbane, Gasiorowicz, Thornto, 1996), following 

simplified equation can be derived from E6-4 and E6-5 for the temperature range between 
20 - 200 'C: 

ar,. 
�id., = 1.42 x1 T' ig = 1.42 x 10-3 - f(Vf ) E6-6 

The relationship among volume fraction of glass fibre, T and CFresidual of the CDMC has 

been listed in Table 6.7 and plotted in Fig. 6.35. It shows that theCrmsidual is about 20 

Wa while the volume fraction is 22.6%(vol. ). Since the matrix was shrinking during 

moulding, the residual stress generated is a clamping force around individual fibres or 
fibre bundles. This may be one of the major causes of matrix cracking after moulding. 
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6.6 Summary 

General mechanical properties of the CDMC reinforced by E-glass and AR50/1 glass fibre 

were investigated and their flexural properties are compared. The results revealed that the 
properties of E-glass and AR50/1 glass CDMC are effected by material's moulding 
temperatures. 

The CDMC moulded at lower temperatures (< 130 "C), were somewhat ductile. At higher 

moulding temperatures (> 160 'C) the material tended to be brittle. Since the fibre sizing 
can be damaged in alkali media during moulding, it seems there is an optimum range of 
moulding temperatures for qualified products. This oPtimised moulding temperature range 
for AR-glass has been worked out through the moulding experiments in last Chapter in 

the range of 130 T to 150 T. 

The fibres studied were initially E-glass fibres and AR-glass fibre 5011. The E-glass fibre 

provided reasonable strength when moulded below 130 T but there after strength 
decreased dramatically with moulding, temperature raising. AR-glass fibres produced 
slightly inferior results in low moulding temperatures (99 -120 'C) but improved 

properties at medium temperatures (130 -150 'C). Combination of E-glass and AR (5011) 

glass provide intermediate properties. The good bonding at moulding temperatures (160 - 
190 "C) between glass and the silicate matrix resulted in a the very brittle composites. 

The property 
ýýffec 

of the volume fraction of glass fibre from 0- 22.6%(vol. ) were 
examined by using a CDMC with AR50/1 glass with the moulding temperature 140'C. 
Flexural, tensile and impact results revealed that the best results were obtained by the 
CDMC with 22.6%(vol. ) AR50/1 glass fibre. 
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Table 6.1 The relationships of flexural strains at failure of the CDMC with 15%(vol. ) AR 
5011 and E-glass fibre at moulding temperature 130 - 190 OC. 

Moulding CDMC flexural strain at failure (mm/mm) 

temperatures (OC) E-Glass AR-glass 
130 0.0045 0.0035 
150 0.0010 0.0016 
170 0.0010 0.0007 
190 0.0012 0.0013 

Table 6.2 Tensile properties of the CDMC with 15%(vol. ) AR50/1 GF effected by the 
moulding temperatures. 

Moulding temperatures 
(0c) 

Strain at failure 
M 

Mm stress 
(Wa) 

Modulus 
(GPa) 

99 0.210 24.22 11.53 
130 0.130 23.50 21.60 
150 0.063 24.75 39.00 
180 0.055 12.80 23.27 

Table 6.3 Effects of volume fraction [%(vol. )] of the AR-glass fibre (5011) on the tensile 
properties, moulding temperature 140 *C. 

Volume fraction of 
AR50/1 in CDMC 

Strain to failure % Max. stress (MPa) Modules (GPa) 

Matrix 0.0239 10.59 37.88 
5.0 0.0547 17.02 28.50 
10.0 0.0872 19.52 24.23 
15.0 0.1258 22.50 23.22 
22.6 0.160 22.27 27.34 
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Table 6.4 Comparison of total energy absorption of the CDMC with 15%(vol. ) AR50/1 
glass fibre moulded at 130,150,170 'C. Total impacting energy was 5.9 J. 

Moulding temperatures, 'C Impact energy absorption, E(J) 
130 0.60 
150 0.30 
170 0.12 

Table 6.5 Energy absorption of the CDMC with variation of fibre volume fractions. The 
total impacting energy 5.9 1 

Volume fraction of glass fibre in CDMC Energy absorption, E(J) 
0% 0.02 

5.0% 0.16 

10.0% 0.15 

15.0% 0.60 

22.6% 0.73 

Table 6.6 Mirror diameter a,, and the corresponding moulding temperatures of examined 
CDMC with 22.6(vol. ) AR50/1 glass fibre. Individual fibre diameter was 14 gm. 

Moulding temperature, 'C a., gm 
99 1-4 
130 1-4 
140 2-4 
150 3-5 
170 5-9 
180 6-9 
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Table 6.7 The relationship between T and volume fraction of glass fibre, Vf . 
Vf (%(Vol. ). ) T (GPa) (Tresidual (Wa) 

0 0 0 

5 3.76 5.34 

10 7.09 10.07 

15 10.06 14.29 

22.6 13.99 19.87 

27 16.02 22.74 

35 19.29 27.39 

40 21.07 29.92 
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General mechanical tests of glass fibre reinfor( 

tests'ýý, 

. ed ceramic moulding compound 

5011: 
GF volume 5,10,15,22 %(Vol. ) 

fraction 
1 

62/2: 

Moulding 
AR-50/1: 130 - 190 'C 

Mo L4temperatures I 

hyýklkl 

, ýes , 
ýPrqwt* 

, M&hAhicAl ITest! i! n! g! 
)ý 

-""ýý, III I'.; I "Oroorties 

Moulding 
temperatures 99 - 180 T 
mixed fibre: 

AR50/1+E-Glass 

Moulding 30,60,9OMin. 
L til 

I 

Volume fracdon] 5011: 0- 22%(vol. ) 
F! eiýu of glass fibre 

_ 
62/2: 15 - 27(vol. ) 

AR-glass fi; re 6 mm 
, 

T7 

len2ths. 15 Vol. ) 12 mm C/o c (Vol. ) 

Mixed fibre length 
6 mm + 12 nim, 22 %(Vol. ) 

Fire peiOrin-'ance 

0 to 17.0 MPa 

Filler selections 

AR, E-Glass CDMC 1130 
- 190 *C 

Temperatures 1 
5011,15%(Vol. ) 1 130,150,180 *C 

Tens 
Fibre 5011: 0.0 - 22.6%(vol. ) 
volume 62/2: 15 - 27%(vol. ) fraction 

Fig. 6.1 The mechanical testing scheme of the CDMC throughout the research 

programme. 
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Fig. 6.2 The flexural stress-strain curves of the CDMC with 15%(vol. ) E-glass fibre 

moulded at a temperature range from 130 - 190 OC. 
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Fig. 6.3 The flexural properties of the CDMC with 15%(vol. ) E-glass fibre roving (Tex 
2450, chopped to 12 mm) moulded at 130 - 190 'C. 
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I 

Fig. 6.4 Flexural failed specimens reinforced with E-olass fibre moulded at different 

temperatures. 
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Fig. 6.5 The flexural stress-strain curves of the CDMC with 15%(vol. ) AR-50/1 glass 
fibre, moulded at temperatures 130 - 190 'C. 
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Fig. 6.6 The flexural properties of the CDMC with 15 %(vol. ) AR50/1 glass effected by 

moulding temperatures from 130 - 190 'C. 

CDMC 164 



Chapter 6 Mechanical characterisation 

.SS 

Fig. 6.7 Some flexural failed specimens of the CDMC reinforced with AR 5011 glass 
fibre moulded at different temperatures. 
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Mechanical characterisation 
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Fig. 6.8 Flexural stress-strain curve comparison of the CDMC with 15%(vol. ) ARSO/1 

and E-glass, moulded at 130 OC. 
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Fig. 6.9 Flexural stress-strain curve comparison of the CDMC with 15%(vol. ) AR and 

E-glass fibre moulded at 150 'IC. 
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Fig. 6.10 Flexural stress-strain curve comparison of the CDMC with 15 % (vol. ) AR50/1 

and E-glass fibre moulded at 170 'C. 
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Fig. 6.11 Flexural stress-strain curve comparison of the CDMC with 15%(vol. ) AR- 
glass 5011 and E-glass fibre, moulded at 190 OC. 
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Fig. 6.12 The strength comparison of the CDMC with 15%(vol. ) AR and E-glass fibre 

over the moulding temperature range 130 - 190 "C. 
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Fig. 6.13 The modulus comparison of the CDMC with 15%(vol. ) AR and E-glass fibre 

over the moulding temperature range 130 - 190 T. 
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Fig. 6.14 The flexural properties of the CDMC with fibre volume fraction of 5- 

22.6%(vol. ), AR50/1 GF (12 mm). 
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Fig. 6.15 The flexural property retention of the pure ceramic matrix. The time is the days 

after moulding. 
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Fig. 6.16 The flexural Property retention examined by using the CDMC with 22.6%(vol. ) 

glass fibre. The time here is the number of days after the CDMC panel moulded. 
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Fig. 6.17 The tensile stress-strain curves of the CDMC with 15%(vol. ) 5011 AR-Glass 
fibre moulded at the temperature of 99 - 180 'C. 
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Fig. 6.18 The tensile stress-strain curves of the CDMC with glass fibre AR50/1 in 
volume fraction of 0- 22.6%(vol. ). Moulding temperature was 140 'C. 
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Fig. 6.19 The typical force-time and energy absorption - time histories of the CDMC 

with 22.6 AR50/1 glass fibre moulded at 140 OC. 
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Fig. 6.20 The impact force-time and energy-time histories of the CDMC with 22.6 

AR50/1 glass fibre moulded at 130 - 180 'C. 
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Fig. 6.21 The impact force-time (up) and energy-time (low) histories of the CDMC with 

5% - 22.6%(vol. ) AR50/1 glass fibre. 
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Fig. 6.22 Impacted specimens with 22.6%(vol. ) AR50/1 glass fibre (12 mm). The 

specimens were shattered with impacting energy 5.9 J. 

Fig. 6.23 Impacted specimens with 151/( (vol. ) AR50/1 plass fibre ( 12 mill). 
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Mechanical characterisation 

Fig. 6.24 A SEM image of E-glass fibre in the CDMC moulded at 160 'C. Severe 

corrosion has been observed on the surface of glass fibre caused by the alkali matrix 

system. 

fir 

Fig. 6.25 Limited fibre pull-out in a tensile fractured section and studied by SEM. The 

specimens with AR-50/1 glass fibre 22.6% were moulded at 130 'C. Insert shows the 

same area on specimen with much smaller magnification. 
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A: Moulding temperatures 160 - 180 IIC 

B: Moulding temperatures 120 -150 'IC 

C: Moulding temperatures 99 -110 'IC 

Fig. 6.26 Flexural test failure types of specimens moulded at different ranges of 

temperature for the CDMC with AR50/1 glass or E-glass. 

Fig. 6.27 Fracturccl surfaccs of specimens with 2214, (vol. ) AR-glass fibre 5011 after 
flexural tests, moulded at 170 'C. 
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Fig. 6.28 The SEM micrograph of a flexural fracture surface, specimen moulded at 99 

OC, the CDMC with 22.6%(vol. ) AR-glass fibre. Some fibres were pulled out completely. 

Fig. 6.29 SEM micrograph of the fracture surface from the tensile specimens with 
22.6%(vol. ) AR50/1 GF moulded 150 'C. 
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a. 

b. 

Mechanical characterisat ion 

Fig. 6.30 (a. and b. ) The SEM micrographs of inatrixcracks and interfacial debonds 

caused by the thermal expansion and shrinkage or mismatching between fibre and matrix 
during the moulding and followed post curing. The sample specimen moulded at 150 V 

with AR50/1 glass fibre was consistently polished until the thickness of specimen reached 

around 200 micron. 
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Fig. 6.31 AR glass fibre under alkali media ofliquid sodium silicates (079) for 24 hours 

at the temperature 99 'C. Since some adhesive or binder around fibre is pealed off, the 

fibre surface becomes rough. 

Fig. 6.32 (left A, right B) The polished specimens moulded at 180 OC (A) and 170 V 

(B). Although there were lots of voids, but the crack could not be observed. 
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A. 99C 

Fig. 6.33 The mirrors were observed at tensile specimens moulded at different 

temperatures 99 'C, 130 'C and 140 'C. 
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Fig. 6.34 A schematic iflustration of two fracture mirrors and the dimensions a. in the 

fibre tops from the CDMC fractured specimens which could be used to predict the in situ 

single fibre strength. 
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Fig. 6.35 The relationship between the matrix residual strength and the glass fibre 

volume fractions in the ceramic moulding composites. 
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Chapter 7 

OPTIMISATION OF THE MECHANICAL PROPERTIES 

7.1 Introduction 

Optimisation of the mechanical properties for the CDMC is carried out by evaluating the 

combination of the matrix with different types and quantities of glass fibres. The 

objectives of this chapter are: firstly, to compare the flexural, tensile and impact properties 

of the CDMC with AR50/1 and AR62/2 glass fibres under selected moulding conditions 
(Tm = 140 'C, P. = 8.0 MPa for 60 minutes), followed by a study of the effects in 

variations of fibre lengths and volume fractions of AR62/2 glass fibre. These are 
illustrated schematically in Fig. 7.1. And finally, the interfacial properties and material's 
fracture mechanisms are investigated and discussed. 

7.2 Comparison of the CDMC with AR50/1 and AR62/2 glass fibres 

The two types of allcali resistant fibre (AR50/1 and AR62/2,12 mm length) were 

evaluated via examination of flexural, tensile and small scale instrumented drop weight 
(lie impact tests. ln,,! 

ýast chapter, it was shown that AR-glass was more suitable for the CDMC 

than the E-glass fibre. Since AR62/2 glass is a newly introduced version of alkali resistant 
fibre, further comparison of AR50/1 and AR62/2 glass is carried out in this chapter. 
AR62/2 composite shows much ductile behaviour compared to AR50/1 composites. 

7.2.1 Flexural properties 

The flexural stress-strain curves of the CDMC with AR 5011 and AR62/2-glass fibres are 
illustrated in Fig. 7.2. It is found that although AR62/2 and AR50/1 glass CDMC have 

similar flexural strengths and moduli, the AR62/2 glass CDMC exhibited greater ductility, 
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and absorbed more energy during fracture. Although chopped glass fibres are randomly 
oriented, extensive fibre sliding, pull-out, and bridging could be still observed as shown 
in Fig. 7.3. The fibres with a good compatible surface treatment, 5011 proceeded to fail in 

to a brittle fashion after being strained less than 0.25%. The compound with 62/2 fibre 

seemed to exhibit non-linear stress-strain characteristics after a strain of about 1.0% with 

considerable fibre pull-out. 

7.2.2 Tensile properties 

Tensile stress-strain curves of the CDMC with AR50/1 and AR62/2-glass fibres are 

compared in Fig. 7.4. The more ductile feature of the AR62/2 fibre CDMC is again 

observed in relative to the AR50/1 CDMC. For the AR62/2 glass CDMC, the initial elastic 

response was followed by matrix cracking which resulted in a fibre-matrix interfacial 

debonding and more absorbed energy. The tensile modulus of AR62/2 glass fibre CDMC 

is also significantly greater than that of 5011 glass fibre CDMC. A comparison of tensile 

properties for AR50/1 and AR62/2 glass fibre composites is listed in Table 7.1. 

In this comparison, it is difficult to understand why is that AR50/1 and AR62/2 glass 

composites exhibit different moduli, while the glass fibre and matrix composition are the 

same. The only difference between these two composites is in their sizing systems used 

on the fibres. The 50/1 fibre might use a different binder which results in a different 

bonding with the matrix compared with the 62/2 fibre, which might give different effects 

on the compound during moulding. But there is not enough evidence to cite that the 
interfacial differences or effects during moulding could determine the elastic moduli of the 

composites. 

The micro fracture of the 62/2 glass CDMC also demonstrates different features to that of 
AR50/1 fibre. Much extensive fibre pull-out is observed in tensile specimens as shown in 
SEM micro-photograph in Fig. 7.5. The comparative SEM fibre pull-out for 5011 fibre in 
CDMC was illustrated in last chapter (Fig. 6.25) with much shorter fibre pulled out after 
failure. This damage process also implies more energy absorption for the AR62/2 glass 
composite compared with the AR50/1 glass fibre composite during testing. This has been 

proved clearly by the following impact tests. 
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7.2.3 Impact properties 

Force-time and energy-time histories of the CDMC with AR50/1 and AR62/2 glass fibres 

are recorded by computer and compared as shown in Fig. 7.6. The AR62/2 glass CDMC 

absorbed more energy compared to the AR50/1 glass CDMC. The values of energy 
absorption of the two composites are also listed in Table 7.2. The AR62/2 CDMC 

absorbed some 20 times more energy compared to the original AR50/1 glass CDMC. 

With the same volume fraction of glass fibre and 15.9 J total impacting energy, the 
AR50/1 CDMC shattered during the impact, while the AR62/2 glass CDMC absorbed 
most of impact energy (15.0 J) without being fully penetrated as shown in Fig. 7.7. The 
AR50/1 glass CDMC is consistent with a good bonding between fibre and matrix which 
results in a brittle failure during impact. Although the AR62/2 glass fibre had a weaker 
bond with matrix, its composites achieved better impact properties. 

7.3 Mechanical properties of the CDMC with AR62/2 glass fibre 

Based on the above results, the CDMC with AR62/2 glass fibre produced better 

mechanical properties than that of AR50/1 glass composite. It was therefore necessary in 

this research to further investigate and evaluate the effects of AR62/2 glass fibre to the 
CDMC with variation in length and volume fractions in order to achieve optimum 

mechanical properties. 

7.3.1 Flexural properties with different length and volume fraction 

o Fibre length 

The mechanical properties of the CDMC with different lengths of AR62/2 glass fibre were 

evaluated. Typical stress-strain curves of the material with 6 mm, 12 nun and 24 nim are 

shown in Fig. 7.8. The CDMC with 6 and 12 mm fibre length exhibit a more ductile 

behaviour with higher strain to failure in comparison with the 24 mm fibre composite. 
This ductile deformation was only achieved by the AR62/2 glass fibre. 
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One of the fractures of a specimen with 22.6%(vol. ) glass fibre tested is shown in Fig. 

7.9. The crack was generated in the tensile side of a flexural specimen with 12 nun 
AR62/2 glass fibres and fibre pull-out and bridging can be observed clearly. 

Generally speaking, the longer the glass fibre in composites, the better the mechanical 
properties. However, for chopped fibre CDMC, the properties are also constrained by 

their compounding and moulding processes. Shorter fibres may be easier to flow or 
transfer to details within the mould chamber. Although longer fibres may be imagined to 

give better mechanical properties, they introduce difficulties during DMC manufacturing 
(mixing and moulding). Longer fibres may be more easily damaged and tangled together 

which hinders the materials flow during moulding when the fibre length far exceeds the 

thickness of the moulding cavity. These might be the reasons that longer fibre panels 

produced lower mechanical properties as shown in Fig. 7.10. Hence, it is not always the 

case that the longer the fibre in composites, the better mechanical properties produced. 

* Volume fi-action 

It has been discussed in Chapter 6 by using 5011 glass fibre that the flexural properties of 
the CDMC were effected by fibre volume fractions, and that 22.6%(vol. ) compound 

generated the highest properties. 

Flexural properties of the CDMC have been examined with different volume fractions of 
AR62/2 glass fibre (length 12 mm): 15%, 22.6% and 27%(vol. ). The flexural stress- 

strain curves are shown in Fig. 7.11 and corresponding strength and modulus are shown 

in Fig. 7.12. Both stress-strain curves and overall flexural data indicate that 22.6%(vol. ) 

glass fibre CDMC produced the highest flexural properties and these results are identical 

with the tensile and impact properties. 

7.3.2 Tensile properties with different fibre volume fraction 

Tensile properties of the CDMC with 15% - 27%(vol. ) AR62/2 glass fibre were examined 

and their stress-strain curves are shown in Fig. 7.13. 
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The highest tensile properties achieved for the material are with 22.6%(vol. ) AR62/2 

glass fibre. This CDMC presented increased ductility (flexural strain to failure) over other 
volume fractions as listed in Table 7.3. The specimen fractures during tensile testing 
involved fibre pull-out and formed huge amounts of fibre bridging, randomly crossing 

cracks. The tensile specimens analysed by SEM showed even clear images of extensive 
fibre pull-out and bridging, as shown in Fig. 7.14. Fig. 7.15 shows three tensile 

specimens with different volume fractions that failed in a similar way with fibre pull-out, 

especially the one with 22.6%(vol. ) AR62/2 glass. Fig. 7.16 schematically illustrates the 

chopped fibre pull-out and fracture along the tensile fractured area and left randomly 

oriented fibre bridging. The higher fibre volume fraction such as 27%(vol. ) caused 

problems in obtaining an uniform compound prior to moulding and the disappointing 

mechanical properties are probably a consequence of the non-homogeneous compound 

with voids and areas of low fibre fraction. 

Both flexural and tensile properties of the CDMC with AR 62/2 glass fibre are varied with 
fibre volume fraction ranging from 15 - 27%(vol. ), as shown in Table 7.3. And the 

trends of strength and modulus developed are the same in both cases. Both maximum 
flexural and tensile properties were reached at the fibre volume fraction around 
22.6%(vol. ). These properties, are approaching the general properties of chopped glass 
fibre polyester and phenolic DMC as listed in Table 2.1. 

The bridging effect is a very interesting phenomena for preventing specimen's 

catastrophic failure generated by progressive fibre pull-out. Many researchers believe that 
fibre debonding and fibre pullout may appear to be similar phenomena because the failure 

takes place at the fibre-matrix interface which significantly enhances fracture energy 
(Agarwal and Broutman, 1990). Fibre bridging can be enhanced to a certain extent by 

increasing fibre volume fraction as shown and indicated in Fig. 7.15. With volume 
fraction of glass fibre increased to more than 22.6%(vol. ), the bridging demonstrated a 

strong effect. These phenomena could be also seen in the AR-glass fibre reinforced 

cementitious materials, steel fibre reinforced concrete, carbon fibre reinforced glass matrix 

and ceramic fibre reinforced ceramic matrix composites (Evens, Zok, 1994; Prow, 1986). 
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7.3.3 Impact properties with variations of fibre length and volume fractions 

9 Fibre length 

The force - time and energy - time histories for the CDMC with 6,12 and 24 mm fibres 

are shown in Fig. 7.17 and Fig. 7.18 and Table 7.4. Testing of different fibre lengths 

were undertaking using a striker, mass 0.78 kg, with an impact velocity of 3.6 m/s and 
total impact energy of 5.2 J. It is observed that 6 and 12 nun fibre reinforced CDMC 

absorb similar amounts of energy: 4.75 J (6 mm) and 4.87 J (12 mm) , but only 2.3 J is 

absorbed by 24 mm CDMC. The force-time traces differed with 6 nim CDMC having a 
lower and wider absorption pattern compared with a 12 mm fibre CDMC. For the 6 and 
12 mm fibre CDMC with 15%(vol. ) 62/2 glass fibre, the striker did not fully penetrate the 
panels. 

The result of energy absorption of the composite with 12 nun fibre length is the best 

among the three lengths a with 15%(vol. ) of glass fibre. If the fibre volume fraction is 

increased to around 23%(vol. ) and the impact energy increases to 15.88 J, the maximum 
impact energy absorption reached 14.88 J. The 24 mm fibre CDMC has the lowest 

energy absorption amongst these three. 'Me reason for this might be the problem 

encountered during the compounding and moulding process. The fibre tangling and an 

non-uniform distribution in the composite which has been mentioned before in this thesis. 
Based on this result, further investigation on the effects of volume fraction for AR62/2 

glass fibre on impact properties was mainly using on 12 min length reinforcement. 

* Volume fraction 

The impact properties of the CDMC with different volume fraction of glass fibre were 
investigated by adding 15%, 22.6%(vol. ), 27%(vol. ) AR62/2 glass fibre to the 

compound. The striker mass used was 2.32 kg which produced 15.88 J impacting 

energy. The impact force-time and energy-time comparisons for the composites with 
different volume fractions are shown in Fig. 7.19. The impact force-deformations of the 

CDMC are shown in Fig. 7.20. Slightly different energy absorption trends are developed 

here compared with flexural and tensile results. The specimen with 27%(vol. ) glass 
fraction absorbed the same amount of energy with 22.6%(vol. ) glass fibre specimen. The 

explanation may be that although 27%(vol. ) glass composite can not reach same level of 
flexural and tensile properties as that of 22.6%(vol. ), it still provides enough surface area 
increase inside the CDMC during impact to absorb equivalent energy. The impact 

damaged specimens with 22.6% and 27%(vol. ) glass fibre fractions are shown in Fig. z: I 
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7.21 - Fig. 7.22. None of these impacted specimen samples were shattered during test. 
These results represent a huge difference in behaviour compared with the AR50/1 and E- 

glass fibre CDMC. 

Fig. 7.23 is a SEM fractograph of an impacted specimen with 15%(vol. ) glass fibre and 
impacted with 5.2 J total impacting energy. This fracture may well represent an new 
impact damage phenomena for chopped fibre reinforced brittle matrix material. When the 
striker hit the specimen on the top surface, the surface contacting the striker provided 
resistance to the drop force and was subjected to a compressive load. Underneath, half of 
the thickness of the specimen was delaminated in a total of 5 layers. The surface of the 
specimen facing the striking force was subjected to a compression from the inside 

specimen while outer surface was under a tensile load and caused an enlarged tensile 
failure ring on the non striking face. The edge surrounding the striker circle was 
subjected to a shear force generated by the striker (diameter 20 nim) and the supporting 
ring (diameter 40 mm) of the specimen. Therefore, this impact failure might be 

summarised as a sequence of compression induced multi-delaniination with shear 
followed with tensile failure. This involved composite deformation, matrix cracking, fibre 
debonding, fibre sliding and fibre pull-out & bridging, then fracture. At the same time as 
a result of these damage processes, a large amount of impact energy was absorbed by the 
composite. 

The maximum energy absorption data for the CDMC is also compared with a energy 

absorption master curve generated from various polymer composite materials using glass 
fibre and carbon fibre reinforcements as shown in Fig. 7.24. The polymer matrices are 
thermoplastics and thermosets. An extensive amount of work at QMW has been 

undertaken to build up these master curves. For both carbon and glass fibre composites, 
if the specimens are of a similar size to those tested, a master curve can be constructed 
linking absorbed energy with specimen thickness multiplied by volume fraction (Babic, 

Dunn and Hogg, 1988). The use of the thickness multiplied by volume fraction allows for 

those unavoidable variations such as thickness, volume faction of reinforcement and type 

of reinforcement which make direct comparisons difficult. In these master curves, the 

range of results was expressed by a geometric variable, the specimen thickness, combined 
with a materials variable - glass fibre or carbon fibre volume fractions. Features related to 

resin type and fibre form therefore, can be ignored. 

It is observed that the CDMC has lower energy absorption compared with glass fibre 

polymer composites, but has similar energy absorption with carbon fibre composites. The 

reason for this lower energy absorption may be due to different manufacturing processes 
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employed, different interfacial failure mechanism between fibre and matrix, and a 
different strains to failure of the fibres. A major difference is that the maximum tensile 

strain to failure of ceramic matrix is about 0.02% but the tensile strain to failure of 

polymer matrix is around - 1.0 - 2.0% about a hundred times higher. These may be one of 
the main reasons which affect the total energy absorption of the CDMC in comparison 
with the polymer composite master curves. 

These impact results also show that the volume fraction of glass fibre gives relatively 
proportional effects on the impact energy absorption (Table 7.5) regardless of the 
difficulties in manufacturing process. However, it seemed that the fibre type played a key 

role. This further raises another issue of interfacial shear strength between fibre and 

matrix. 

7.3.4 The elastic properties of the CDMC 

In the CDMC, if we could restrict parameters such as fibre length to be 12 mrn and 

assume most fibres have a 2-D in plane distribution of fibre orientations, we may use 
Cox's equation and the Halpin-Tsai equations to evaluate or to compare the theoretical 
Young's modulus with the measured elastic properties of the CDMC added with both 

AR50/1 and 62/2 chopped glass fibre in different volume fractions. 

Based on the modified equations of "rule of mixtures" developed by Cox (1952), Halpin 

and Tsai (1969), for the CDMC reinforced by chopped glass fibre (or other types of 

chopped fibre such as carbon fibre, etc. ), the reinforcing efficiency of short fibres is less 

than that of long fibres, it follows that the effective modulus of CDMC would be less. 

For unidirectional aligned fibre material, the rule of mixtures (E7-1 and E7-2) 

developed by Halpin and Tsai: 

Ell = Ef Vf + E,, (l - Vf) E7-1 (Halpin-Tsai) 

An, extension indicated for short fibre composites of the Halpin-Tsai equation as shown in 

E7-2 expresses the longitudinal Young's modulus for only the parallel short fibre 
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arrangement. Where il is a general correction factor as explained in E7-3 and ý is a 

geometrical parameter depending on fibre shape and arrangement which can be worked 

out by equation E7-4. Cox (1952) included other two additional ter-ins '90, TI, into 

equation E7-1 and shown as equation E7-5. 

il - the correction factor; 

ilo - the orientation efficiency factor; 

ill - the fibre length factor; 

ý- is a geometrical parameter depending on fibre shape and arrangement. It depends on 

various characteristics of the reinforcing phase such as the shape and aspect ratio of the 
fibres, packing geometry and regularity and also on loading conditions. 

Since these equations are all based on an assumption of Ef>>E. , the suitability of these 

equations for the CDMC is questionable as E. (cl)mc) is about 0.5 Ef of the CDMC. 

The extension for a fibre length of I with unidirectional orientation in composites can be 

expressed as : 

Ell 
E'0+ ý77Vf 

E7-2 (Halpin, 1969) 
1- ? Ivf 

where ?7= 
(mf / M. ) -I E7-3 
(Mf /M )+ý 

and E7-4 
r 

The Cox equation for 3-D or 2-D orientated short fibre distributions, assumed that the 

matrix and fibre deform elastically and the strains are equal (E7-5): 
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= 
Eh7/ 11 

77, 
E1- (tanh Pl)/ Pi Econtinuous 

22 

E7-5 (Cox, 1952) 

E7-6 

Where P is the angle related with the fibre orientation and position can be obtained by 

equation E7-7, and 2R is the inter fibre spacing and 2r is the fibre diameter. G. is the 
shear modulus of matrix. 

I 

where 2 
2G,,, 2 

E7-7 
Ef r In(R / r) 

and TIO is given by equation (E7-8), related to fibre directions and dimensions: 

i7o = af I laf =I Aaf cos 40/ af E7-8 (Krenchel, 1964) 

The Aaf is a total cross-sectional area of a group of parallel fibres lying at an angle 0 to 

the applied load, it is equivalent to a group of fibres of area Aa'f aligned in the direction of 

the applied load. 

For unidirectional lamina : i1o = 1. 

When test at perpendicular to the fibres: TI, = 

For 2-D in plane fibre orientation: i1o = 3/8 
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For 3-D fibre orientation: ilo = 115. 

For a in-plane random fibre distributions: il, = 0.99. 

When the fibre orientation is in 3-D, the Tj is given by equation E7-3 and ý is given by 

equation E7-4. 

For the CDMC with 12 mm AR glass fibre and fibre diameter is 14 4m: 

according to E7-4: 

12mm 
= 1714.29 

r 0.007mm 

The modulus of AR-glass fibre K and pure ceramic matrix M. are: 

Mf = 80 GPa, 

M. = 37.8 GPa, 

Therefore, Tj in E7-3 is : 

8 %37.8 
-11.12 

=6.53xlO-4 77= 8 %37.8 + 1714.28 1716 

Knowing 4 and TI, it is possible to use the Halpin prediction for the modulus for the 

volume fraction of AR50/1 and AR62/2 glass fibres. They are also compared to the Cox 

model (E7-5) in Fig. 7.25. It shows that firstly, the two glass fibre composites do not fit 

with Halpin's equation at all. The elastic properties of the CDMC is closer to the Cox 

prediction but still does not fit well. The trends of the two elastic moduli of the CDMC are 
not linear since at lower glass fibre volume fraction, the elastic modulus tends to decrease 

and then increase with further increase in fibre volume fractions. The trend of AR62/2 
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CDMC is closer to the Cox prediction when the glass fibre Vf increase to more than 
20%(vol. ). The elastic modulus of the CDMC with AR50/1 is under the Cox prediction 
equation. 

The fitting of the two curves for the 5011 glass and 62/2 glass fibre composites are: 

E5011CDMC :-0.07 1V2 
- 2.037V + 37.505 E7-8 ff 

E62 
/2 CDMC= 0.043V2 _I 007V + 37.365 E7-9 ff 

It is possible that the difference between the experimental results and predictions is 
because the two equation assumed that Ef >>E. (but for the CDMC Ef = 2E.. ). Two 
fitting lines have been drawn for the elastic data of the CDMC with AR50/1 and AR62/2 

respectively. A second order power lines fit more suitable for prediction of the modulus 
with the volume fraction of moulding composites in this range of material's volume 
fraction. For higher glass fibre volume fi-action (>23%(vol. ), different mathematical 
equations may be developed based on the experimental results. 

It may be possible to obtain a equation based on the Cox equation with some more 
correction factors. Factors such as voids, fibre lengths, matrix influences and possibly 
moulding conditions have to be considered and added to the equation and more wider 
range of chopped fibre ceramic composites should be investigated and compared. As an 
assumption, a new equation given as E7-10 for fibre volume fraction range from 0- 
27%(vol. ) based on Cox prediction equation and preliminary equations E7-8 and E7-9, 
for AR50/1 and AR62/2 glass fibre composites. It is possible that when fibre volume 
fraction >27%(vol. ), the n in equation 7-10 might be <2. 

E= 710 71, Ef Vf' + 77 71, E. (1 - Vf ) E7-10 

Where 

n: n=2 when volume fraction of glass fibre is 0- 27%(vol. ) 
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Tjý,, = factor of matrix composition. 
TI,, = Factor of volume fraction of glass fibre. 

Other factors should also be considered such as different residual stresses, interfacial 

properties and mismatch between fibre and matrix when the material is processed under 
different moulding conditions. The environmental conditions such as testing temperature 

and humidity may also have influence as well. These factors needed to be further 
investigated, but are outside the scope of this work. 

7.4 Interfacial properties between glass fibre and matrix 

The fibre/matrix interface is known to play a major role in ceramic composites ductility. 

This part of work is an attempt to obtain a value for the debonding load and interfacial 

shear stresses between fibre and matrix using an computer controlled indentation 

equipment. 

The basic fracture mechanisms for ceramic composites are firstly matrix cracking, 
followed by fibre debonding, pull-out, bridging, splitting and fibre fracture. All these 

contribute to the work of fracture. The existence of interfaces contributed to these 

mechanisms of energy absorption and crack blunting by fibres, which are responsible for 

the ductility or fracture toughness of the composite materials (Chamis, 1994; Cooper and 
Kelly, 1969). 

In the interface between glass fibre and ceramic matrix, after the first crack was formed 

across a fibre in ceramic matrix, the matrix stress was transferred to the fibres at the 

crack. Since the fibre is discontinuous and randomly oriented, whether they can support 

the stress or pull out from the matrix depends on the shear stresses developed on the 
fibre/matrix interface or on the strength of the interfacial bond (Majumdar AJ and Law V, 

1973). If we assume that the shear stress developed at the interface is uniform along the 
fibre length, the load is then transferred from the fibre to the matrix and decreases linearly 

with distance from the crack. Therefore, since the ceramic matrix is brittle rather than 
ductile and does not show a yield stress, it leads to the result that the push-out or pull-out 
load is directly proportional to embedded fibre length. It has been reported that when resin 

and fibre become de-bond, then the fractional stress developed between fibre and matrix 
is roughly constant during pull-out or push-out (Kharrat, Carpenter, 1996). 
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7.4.1 Interfacial shear strength 

The random fibre orientation in the composite does not allow a simple test such as 
interlaminar short beam shear strength or a transverse tensile tests to be undertaken that 
the indirectly gives a measure of the interfacial strength. Therefore, in order to measure 
the interfacial shear strength some trial experiments were carried out using a computer 
controlled micro-indentation system. Specimens used for indentation tests between single 
AR-glass fibre and the matrix effected by the moulding temperatures are listed in Table 
7.6 and Table 7.7. Since the CDMC specimens moulded at lower temperatures less than 
150 'C were too soft and could not be polished into required thickness, only the CDMC 

specimens moulded at 150 cC and 190 'C were tested. The result of interfacial shear 

strength of the CDMC moulded at 190 'C was higher between the fibre and matrix 

compared to the panel moulded at 150 OC. 

The specimen thickness of 200 - 300 micron were polished. The indentor used was 20 

micro-diameter, maximum load was 500 mN. One of the micro-indentation load - 
displacement curves of the glass fibre pushing out from the CDMC moulded at 150 Cc is 

shown in Fig. 7.26. The debonding load for this particular glass fibre was around 260 - 
280 mN. The average interfacial shear strengths at moulding temperatures of 150 T and 
190 'C are 22.20 MPa and 37.45 MPa respectively. 

Consequently, if ffictional forces play any part in the pull-out mechanism, it is essential to 

differentiate clearly between catastrophic and non-catastrophic debond in order to 

determine the true shear strength of the interface. It is sometimes preferable to ensure that 

the fibre and matrix interface has a low adhesive strength, so that it debonds easily. Since 

the ceramic composites' main priority is to raise its ductility, it can be done through 

promoting crack-deflection at the interface, to induce fibre pull-out by frictional sliding, 

which absorbs a substantial amount of energy. 

Detailed analysis on the Hi-Nicalori/A-S'3N4 ceramic matrix composites has been 

undertaken (Monssef, Nakano, 1997) which concluded that if the fibre was subjected to 

an axial stress resisted by a contact shear stress, such as compressive stress, a radial 

compression is induced at the interface as a consequence of the so-called Poisson effect. 
This, in turn, modifies the resultant interfacial radial stress and the frictional stress would 
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take into account of all the contributions from the clamping stress at the fibre / matrix 
interface. 

7.4.2 Fibre sliding and fracture 

Fibre - matrix interface was highly effected by moulding temperatures. Based on the 
properties of the CDMC achieved in different moulding temperatures, the overall 
moulding temperature effects to features of interface were approximately estimated in Fig 
7.27. 

The tensile failed sections of the SEM fractograph for the specimens have been observed 
that much larger surfaces generated by fibres, an improvement in ductility and presented a 
consistent characterisation of interfacial mechanical properties. This has been described 

with two perimeters by previous researchers on this particular research field. One is 

associated with fracture and the other is with slip (Kerans and Parthasarathy 1991; 
Mackin, Warren and Evens, 1992). Fracture or debonding is considered to involve a de- 
bond energy, which is primarily a mode 11 (shear) fracture phenomenon. With a brittle 

matrix, mode II fracture typically occurs by the coalescence of micro cracks within 
material layers (Fleek, 1991). This was observed in the form of fracture marks on the 

sliding fibre surface which probably produced by the sizing layer or by absorbing locally 

concentrated fracture energy. These energy absorption marks were illustrated in the 
AR50/1 fibre surfaces in Fig. 7.28, Fig. 7.29, and Fig. 7.30 for a tensile failed section of 
the CDMC moulded at 130 'C. 

This indicated that debonding occurred after the cracking process especially when the 

material was moulded at temperatures lower than 150 'C. The presence of a small fringe 

of striations on some fibres in the nucleation zones indicated the localised direction of 

crack growth. When a discrete de-bond crack exists, fractured sliding of the crack faces 

proceeds the shear resistance, such sliding occurs in accordance with a friction law 

(Marshall and Oliver, 1987): 

,r --2 Tý, - PC", 

Where ýt was the Coulomb friction coefficient, a, is the compression nominal and T. is a 

term associated fibre roughness. For debonding and sliding to occur, rather than brittle 

cracking through the fibre, the debonding energy, r, must not exceed an upper bound 

relative to fibre fracture energy Tf . 
Fig. 7.30 is showing that some special marks of fibre 
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sliding on the surfaces of some AR fibre can be observed from its tensile failed 

specimen's SEM photograph. 

7.4.3 The CDMC interfaces effected by moulding temperatures (assumptions) 

Apart from the sizing systems which can only be controlled by the fibre manufacturer, the 
moulding temperatures were a major influence on the interfacial properties. At low 

moulding temperatures, a weak bonding can be produced; at medium moulding 
temperatures, an adjustable bonding can be produced and at high moulding temperatures, 
a strong bonding can be generated. 

* Bonding at 99 - 120 'C 

At this moulding temperature range, a coupling agent might provide a stable, water- 
resistant bonds across the surface of glass fibre. A non-polar end of the coupling agent 
would be assumed towards a silica matrix when the materials moulded at this temperature 
range. It was unlikely to produce a strong bond between a matrix and a glass fibre in a 
short term owing to the barrier of organic sizing system. 

9 Bonding at 170 - 180 'C 

The over heated water forms vapour which may attack the sizing layer on the surface of a 
glass fibre with highly alkalinity when moulded at this temperature range. The sizing 
layers could be washed away (Cooper and Kelly, 1969) and high shear inter-actions 

between fibre / matrix during flow also tore the size structure apart as it formed during 

moulding. Then the full benefit of silanes might be lost (Plueddemann, 1988). It should 
be noted that most coupling agents were designed for producing a stable, water-resistant 
bond at the interface for composites prepared under low shear and pH neutral conditions. 
It should also be emphasised that at high alkali condition and elevated temperatures, and 
high shear force during moulding, Si-O-Si bonding could be hydrolysed (Hogg, 1981; 
Jang and Ishida, 1988). This would result in the matrix and glass fibre forming strong 
bonds directly through Si-O-Si chains. The interfacial bonding strength effected by the 

moulding temperatures ranging from 99 'C to 180 'C is shown in Fig. 7.31 schematically. 
The effects of sizing barrier, -Si-OH, -Si-O-Si- were briefly displayed. 
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* Bonding at 130 - 150 'C 

The sizing system might be washed away and forming a partially bonded area. This 

could be very important in the range of the temperatures where the bond strength between 

fibre and matrix might be adjustable, and gives the opportunity to design the interfacial 

strength and performance for AR glass fibre. 

For flexural and tensile specimens, moulded at temperatures 130 - 150 OC, the fibre 

pullout lengths at the resisting of tensile failure varied according to the fibre types. For 

the CDMC using 5011 Cem-FlIL fibre, the fibre pull-out was from 10 gm - 30 gm and for 

AR62/2 glass, the pull-out length is around 1.0 mm. The lower the moulding 
temperatures, the longer the fibre pulled out. The SEM study suggested that with 
temperature increase, the length of fibre pull-out would be decreased. The AR62/2 glass 
fibre composite specimens moulded at 130 - 150 T exhibited 10 ýLrn to several mm fibre 

pull-out length during tensile and flexural tests as observed in many of SEM photos in 

this Chapter. 
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7.5 Summary 

The AR-glass fibre in composites was studied and revealed that optimum tensile, flexural 

and impact properties can be obtained with a chopped fibre of 12 mm and the fibre 

volume fraction of 22.6%(vol. ). The use of the selected AR-glass fibre 62/2 resulted in 
the better flexural and tensile properties and a higher energy absorption in impact 

compared with AR50/1 and E-glass fibres. Some general properties of optimised glass 
fibre composites are surnmarised in Table 7.8. 

Compared with AR50/1, AR62/2 fibre may give better heat resistance during moulding. 
In turn, it may provide suitable interfacial properties (relatively weak) for the CDMC 

when moulded at 130 - 150 'C and then increased ductility and energy absorption during 
impact. In general, the use of the AR-62/2 glass fibre resulted in improvements in tensile, 
flexural and impact properties, extended the tensile strain at failure and increased impact 

energy absorption. This improvement in failure process, a so called pseudo-plastic 
deformation, involves matrix cracking, fibre debonding, followed extensive fibre pull- 
out, then fibre fracture or bridging. Here the length of fibre pull-out may give certain 
contribution to this pseudo plastic deformation. 

The CDMC properties are also effected by different lengths of glass fibres (tested by 

using AR62/2) and these were examined by adding 15%(vol. ) different lengths of glass 
fibre. The CDMC with 6 mrn fibre length generated highest modulus among them but 

lower average strength compared with 12 mm. glass fibre. The longer fibres such as 24 

mm., allowed certain forces to sustain by lowest stress and strain before rupture occurs. A 

combination of both 6 mm. and 12 mm fibre might result in a synergistic improvement 

with both strain at failure and energy absorption being optimised. 

The interfacial properties of this composite are crucial in determining the mechanical 

properties. The different moulding temperatures produced different interfacial shear 

strengths. It is observed and proved that the higher the moulding temperatures produced 

stronger interfacial bonding strength, while the lower moulding temperatures produced 
lower shear strength or weak bonding. The very weak bonding could be achieved by 

moulding process at low temperatures as low as 99 'C. 130 - 150 T has been selected in 

the CDMC moulding process as the better moulding temperature range for overall 
mechanical properties. Some preliminary results were successful in indicating an 
interfacial shear strength of 22 to 37 MPa with 5011 fibres depending on processing 
temperatures. 
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Table 7.1 The tensile properties of the CDMC with 22.6%(vol. ) AR50/1 and 62/2 glass 
fibres respectively. The specimens were moulded at 140 'C. 

Glass fibre in the CDMC 
Composites AR50/1 AR62/2 
Tensile strength, MPa 2 -1. -17 51.0 
Tensile modulus, GPa -17.34 42.9 

Table 7.2 Energy absorption of the CDMC with AR50/1 glass fibre and AR62/2 glass 
fibre. 

Composites Energy absorption (J) 

Total impacting energy (J) 15.9 

AR50/1 CDMC 0.7 

AR62/2 CDMC 14.9 

Table 7.3 The tensile properties of the CDMC effected by volume fractions of the 
AR62/2 glass fibre (12 mm). 

Volume fraction of Tensile strength Tensile modulus Strain to failure 
AR62/2 cr, MPa E, GPa F, % 

in the CDMC 
15%(vol. ) 18.6 29.14 0.082 

22.6%(vol. ) 51.0 42.10 0.240 

27%(vol. ) 34.0 39.10 0.135 
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Table 7.4 Energy absorption of the CDMC panels moulded with different length of AR 
6212 glass fibre [(15 %(vol. )], moulded at 140 'C. Total impacting energy was 5.12 J. 

Fibre lengths, mm Impacting energy(J) Energy absorption(J) 
6 5.12 4.75 
12 5.12 4.87 
24 5.12 2.30 

Table 7.5 Energy absorption of the CDMC with different volume fraction of AR62/2 

glass (12 n1m) in impact tests. Effects of different fibre type, matrix systems to impact 

energy absorption were listed. 

Glass fibre 

used 

I Impacting energy 
(J) 

Energy absorption of different volume fraction 

of glass fibre (J) 

Glass fibre volume fraction, %(vol. ) 15% 22.6% 27% 

AR50/1 CDMC 5.12 0.27 0.73 0.84 

AR62/2 5.12 4.87 5.0 5.0 

CDMC 15.90 11.34 14.88 14.99 

Table 7.6 Specimens used for indentation test for interfacial shear strength between the 

single fibre and ceramic matrix. 

Fibre diameter, 

ýtm 

Thickness of 

specimen, ýim 

Moulding conditions 

Temperature, OC Pressure, Bar 

14 
- 

300 150 80 
[ 14 300 190 80 
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Table 7.7 The interfacial shear strengths between single AR-glass fibre and the matrix 
effected by the moulding temperatures. 

Moulding temperatures Interfacial shear strength (MPa) 
150'C 22.20 
190 OC 37.45 

Table 7.8 The mechanical properties of two optimised glass fibre reinforced CDMC were 
listed. The CDMC were moulded with optimised moulding conditions. 

Properties CDMC with 
22.6%(vol. )AR50/1 

12 mm glass fibre 

CDMC with 
22.6%(vol. )AR62/2 

12 mm glass fibre 

Flexural strength (MPa) 82.0 120.0 

Flexural modulus (GPa) 32.0 39.0 

Tensile strength (MPa) 25.0 51.0 

Tensile modulus (GPa) 39.0 42.90 

Strain to failure in tension 
M 

0.10 0.24 

Energy absorption in impact test 
(J) 

0.67 15.0-20.0 

Density 2.30 2.30 

Coefficient of thermal ex ansion, 
25 - 400'C (10-6 

0) 5.0-7.0 5.0-7.0 

Specific heat (J/g 'C), 
(20-280 'C) 

1.5-2.0 1.5 -2.0 

Coefficient of thermal 
conductivity (W/m. K) 

0.386 0.386 
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Ceramic 
Flexural test Matrix 

AR50/1 Tensile test 
Glass Fibres Impact test 

AR62/2 

Optimised 
CDMC with 
AR62/2 fibre 

Fig. 7.1 The schematic view of the glass fibre optimisation for the ceramic moulding 
composites. 

80 

60 
L*j 

0. 

40 

20 

0 

5011 fibre 
I 

62/2 fibre 

------ 15%(vol. ) 5011 

15%(vol. ) 62/2 

0 0.0025 0.005 0.0075 0.01 0.0125 

Strain (nmVmm) 

Fig. 7.2 The flexural stress-strain curves of 15%(vol. )AR-50/1 and 62/2 glass fibre 

composites, moulded at 140 'C. 
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E0 

20 
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CDMC with 22.6%(vol. )AR62/2 OF 

CDMC with 22.6%(vol. ) AR5011 OF 

AR62/2 

AR50/1 

0 0.05 0.1 0.15 0.2 0.25 0.3 

Strain (%) 

Fig. 7.4 Comparison of typical tensile stress-strain curves for 22.6%(vol. )AR50/1 and 
AR62/2 glass CDMC, moulded at 140 IV. 
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Fig. 7.6 Comparisons of the impacting force-time and energy-time histories of the 

CDMC with 22.6%(vol. ) AR62/2 GF and 22.6%(vol. ) AR50/1 GF. Moulding 

temperature was 140 'C. 
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Fig. 7.7 Comparison of the CDMC specimens after impact. The CDMC was reinforced 
by 22.6%(vol. ) AR62/2 glass fibre (A. ) and 22.6%(vol. )AR50/1 glass fibre (B. ). 

Moulding temperature for both specimens was 140 'C. 

75 

50 

25 

6 mm fibre 

12 mm fibre 

24 mm fibre 

6 mm 

24 mm 

0 

12 mm 

0.0025 0.005 0.0075 (). () I 

Strain (mm/mm) 

0.0125 

Fig. 7.8 Flexural stress-strain curves of the CDMC with different glass fibre lengths: 6, 

12 and 24 mm, volume fraction of fibre was 15%(vol. ), fibre type was AR62/2, moulded 

at 140 OC. 
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Optimisation of the mechanical properties 
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Fig. 7.10 Flexural properties of the CDMC effected by lengths of the glass fibre AR62/2, 

moulded at 140 'C. 
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Fig. 7.11 Flexural stress-strain curves of the CDMC with glass fraction: 15% - 
27%(vol. ). Fibre type was AR 62/2, moulded at 140 'C, 
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0 
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Table 7.12 Flexural properties of the CDMC effected by volume fraction of the AR62/2 

glass fibre (12 mm): 15%, 22.6%, 27%(vol. ). Moulding temperature 140'C. 

60 

------- CDMC with 15%(vol. ) AR62/2 GF 

50 - 
CDMC with 22.6%(vol. ) AR62/2 GF 

0 0.40- 

30 27%(vol. )GF 

20- 
15%(vol. )GF 

10- 

0 
0 0.05 0.1 0.15 0.2 0.25 0.3 

Strain (%) 

Fig. 7.13 Tensile stress-strain curves of the CDMC with AR 62/2 glass in volume 
fractions from of 15% - 27%(vol. ), moulded at 140 'C. 
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VýM- ý, 

- 

B. 22%(vol. ) AR62/2 C. 27%(vol. )AR62/2 

D. Enlarged B. 

Fig. 7.15 The views of the tensile failed specimens with different volume fraction of glass 
fibre from left to right A [15%(vol. )], B [22%(vol. )], C [27%(vol. )]. and D is the 

enlargement of B. The width of the tensile specimens were 25.0 mm and thickness was 
4.0 mm. 

Crack & Fibre pull-out, bridging 
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;; - 
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E 

4 
Crack & Fibre pull-out, bridging 

Fig. 7.16 A schematic illustration of the fibre pull-out in tensile crack, fibre pull-out, 
failure and formed the bridge by groups of fibre bundles along the tensile failed section, 

corresponding to the case of Fig. 7.15. 
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Fig. 7.17 The impact force-time histories of the CDMC panels with 15%(vol. ) AR-62/2 

GF and different fibre lengths, moulded at 140 OC. 
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Fig. 7.18 The impact energy absorption-time histories of the CDMC with AR62/2-glass 

fibre and different fibre lengths, moulded at 140 'C. 
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Fig. 7.19 The impact force-time and energy-time histories of the composites with 

different volume fraction of AR62/2 glass fibre (12 mm) under total impacting energy 

15.9 J. The materials was moulded at 140 'C. 
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Fig. 7.20 The force-deformation curves of the CDMC with different AR-glass fibre 

volume fractions obtained during impact, fibre length 12 mm, total impacting energy 

15.9 J. 
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Fig. 7.21 The impacted CDMC specimens with 22.6%(vol. ) AR02/2 glass fibre moulded 

at 140 'C. Total impacting energy was 15.9 J. 

Vol 

ý 1ý 

2 

Fig. 7.22 The impacted specimens of the CDMC with 27%(vol. ) of AR62/2 glass fibre. 

The total impacting energy was 15.9 J. 
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Optjrrýsation of the mechanical properties 
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Fig. 7.24 The maximum impact energy absorption data of the CDMC in two fibre 

composite master curves, absorption energy to thickness (mm) multiplied by V, .A 
very wide range of glass fibre or carbon composites falls on these master curves, 

irrespective of the matrix types (thermoset, thermoplastic) and reinforcement types 

(woven fabrics, CSM, UD stacks). 
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Fig. 7.25 Comparison of elastic properties of the CDMC reinforced by AR50/1 and 

62/2 glass fibres in volume fractions with the Cox and Halpin-Tsai prediction equations 

for short fibre composite materials. 
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Fig. 7.26 An illustration of micro-indentation load - displacement of the glass fibre push- 
out from the CDMC. The 200-300 micrometer thickness specimens moulded at 150 'C 

and 190 'C. The indentor used was 20 micro diameter, maximum load was 500 mN. 

Different moulding Very low temperatures Low temperatures ffigh temperatures 
temperatures 90 * to 120 *C 130 * to 160 *C 170 1 to 250 *C 

Interficsil bonding 
between glass Weak interface Mediam interface Strong interface 

Interfaces between 
fibre and matrix 

Glass fibre 

and Matrix 

Effects to 
coupling agent 
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leadin to brittlenss effected by Interface modulus decreasing fibre pulling out g 
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Fig. 7.27 A schematic drawing of the trends in mechanical properties and interfacial 

strength effected by the moulding temperatures. 
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Fig. 7.28 A tensile fractured single fibre in the tensile failed specimen moulded at 140 'C. 

The glass fibre was 62/2,12 mm length, 14 pm. The insert Is in lower magnification of 

part of the same specimen. 
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Fig. 7.29 The fibre sliding model could be an indication of the location ot'debonding and 
frictional sliding. The cross-hatched region was a thin fibre coating or sizing system 
(Marshall and Oliver, 1987). 
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Fig. 7.30 A practical fibre sliding in a surface section of a tensile failed specimen with 
AR 50/1 glass fibre, moulded at 130 'C. The cross-hatched region/marks are probably a 

thin sizing film scratched by the debonding. And the matrix cracking was also observed in 

the tensile tested specimens moulded at low temperature (130 'C). Up insert is same 

specimen in lower magnification, lower insert Is a single fibre fracture in higher 

magnification. 

The Interface Changing with the Bonding Strength 
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Fig. 7.31 A schematic show of the interfacial bonding strength effected by the moulding 
temperatures ranging from 99 'C to 180 'C briefly the effect of sizing barrier, -Si-OH. - 
SI-O-SI- were displayed. 
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r'll. 
Chapter 

FIRE PERFORMANCE 

8.1 Introduction 

In this Chapter, two main tests have been carried out: a fire resistance test which 
measures the temperature transmission with time through a fire barrier panel; and a 
material's reaction to fire test by using a Cone Calorimeter. 

The fire resistance and Cone Calorimeter tests are newly developed small scale testing 
methods for material's fire and thermal properties. The rMO test uses a small scaled 
furnace to measure the fire resistance or resistance to fire penetration and is a effectively 
scaled version of BS476, Part 20. The Cone Calorimeter test measures a material's basic 

reaction to heat/fire. Both tests were considered to have merit for the study of material 
variables in this programme. Three types of panels were investigated by these testing 
methods: the CDMC panels; a phenolic/NCF laminate and a phenolic DMC panels. 

8.2 Fire resistance 

The CDMC and phenolic panels and the different fire testing conditions are listed in Table 
8.1. These included the CDMC panels with glass fibre volume fraction. 22.6%(vol. ) 

moulded at 140 "C; phenolic/glass fibre laminate and phenolic DMC panels with glass 
fibre 25%(wt. ). The thickness of ceramic moulding compound is from 3.0 - 3.4 mrn and 
the density of the material was around 2.0 g/CM3. 

For a typical fire resistant material, the normal requirement for resistance to fire has to be 

such that a fire does not spread so rapidly as to jeopardise the safety of passengers 
(BS6853,1987) if part of a transport system, or occupants if in part of a building. To 

simulate the real fire, a group of gas burners in a furnace was used., The test exposed one 
side of the CDMC plate to a rising temperature while the temperature rise on the 
unexposed face of the plate was recorded cointinuously. 
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Dehydration is the initial reaction of a normal material to fire or heat and this occurred in 
the matrix of the CDMC panels during the fire test. The temperature inside the furnace 

would reach nearly 1000 'C within a few minutes after the ignition of fire. As the 
temperature increased, the matrix started to lose physically contained moisture in the 
temperature range 100 'C - 200 'C, followed by chemically bonded water, which was 
released before 500 ̀ C. One of the test results of a typical CDMC with 22.6%(vol. ) glass 
fibre listed in first row in Table 8.1 is displayed in Fig. 8.1, together with the standard 
temperature rise curve (shown as IMO curve) generated by the gas burner inside the 
furnace. 

The CDMC panel lost its chemically bonded water at around 250 to 300 OC, forming 

water vapour on the surface of the panel (which could reduce the heat transfer during 
firing). No shrinkage crack or fissures occurred during the test. No crack was observed 
on an unexposed surface of the panel from room temperature to 500 T as shown in Fig. 
8.2. However, the inner face of the panel exposed to the furnace fire may have cracked a 
few times when the furnace temperature rose to above 800 OC. No crack occurred on the 

unexposed face of the panel during the whole test. The furnace temperature rose from 

room temperature to 960 "C during a 60 minute period in the fire test. The test resulted in 

a rise of temperature in the immediate vicinity of the inside surface of the specimen 
according to a specified temperature - time curve. This temperature / time curve simulates 
the conditions imposed in practice by burning cellulose or hydrocarbons. 

The 3.0 mrn thickness panel retained structural integrity despite a maximum temperature 
difference of 500 T between exposed and unexposed faces at the end of the test. The 
temperature gradient here was nearly 170 'C for each mm for this sample. 

After the fire test had finished, the specimen was cooled down rapidly to room 
temperature. The difference in thermal expansion (or contraction) among fibre, fillers and 
matrix produced stresses causing propagation of existing cracks. During the monitored 60 

minute test, no surface cracks or through thickness cracks were visible on the unexposed 
face of specimen. It was only after the test and surface shrinkage that a few fissures less 

than 0.5 mm were observed while the tested sample cooled down to a room temperature. 
The higher the firing temperature reached, the more cracks on the exposed surface; and 
the longer the firing time, the greater the distortion. These are shown in Fig. 8.2 when the 
final temperature was over 1000 'C for 80 minutes with large cracks produced on the 
exposed surface during cooling. 
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The samples from exposed and non-exposed faces of the CDMC panel that had 

experienced over 1000 'C were collected, then the microstructures of panel were 
examined by SEM. The levels of damage for both fibre and matrix were checked in these 
exposed and un-exposed faces. Their micrographs were obtained and shown in the left 

side of Fig. 8.3/A and Fig. 8.3/B; on the right sides are their original state of glass fibre 

surfaces before fire in relevant magnification. The thermal erosion on the surfaces of glass 
fibres can be observed on both sides of the panel after firing around 1000 *C. On the 

non-exposed surface of the CDMC, the fibre still remained its shape and a certain 
smoothness. A slight surface erosion had taken place by the intensive heat blast[Fig. 
8.3/(A) left]. The exposed face had more thermal erosion which resulted in rough 
surfaces on glass fibres [Fig. 8.3/B (left)). Despite the thermal erosion, the glass fibres, 

still retained their basic shape and this helped the composite panel kept its integrity and 
certain mechanical properties. 

8.3 Comparison of the CDMC with phenolic composites 

The temperature curves of fire resistance for the CDMC and for a glass phenolic laminate 

against time have been compared in Fig. 8.4. The phenolic / glass (NCF) laminate had 
been tested was just for comparison. At the start of the fire test in first 10 - 20 minutes, 
the same water evaporation took place from both materials. This process delayed the 
temperature increase in samples for certain period of time by absorbing a large amount of 
heat. 

The glass/phenolic laminate absorbed more heat energy from temperatures 100 to 400 'C 

through water loss and degradation or decomposition of its polymer constantly. The curve 
for temperature rise is almost as same as for the CDMC at the starting few minutes. Then 
followed temperature drops due to the phenolic matrix decomposition (burning out) 
around temperature 140-400 *C. However, one of the major advantages for ceramic 
moulding composites here is that no chemical is released during the whole firing process 
apart from water vapour (or moisture contained). But the phenolic laminate panel with 8.0 

mm thick generated lot of smoke and burnt during almost the whole test period, especially 
a few minutes after the test started. With a thickness of only around 3.0 mm. the CDMC 

panel achieved better fire resistance than 8 mm, thick glass/phenolic laminate. 
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From a structural point of view, the 3.0 mm ceramic composite structure suffered less 
damage compared to the phenolic composite. It was observed that at the same temperature 
range, the phenolic based glass fibre laminates with thickness 8.0' mm failed and was 
penetrated by fire less than 30 minutes into the fire test. A damaged phenolic composite is 

shown in Fig. 8.5 with a completely damaged structure (delamination) and a burnt out of 
resin matrix. 

8.4 Constant firing temperature 

An alternative fire resistance test used constant furnace temperature at 700 OC. At this 

stable working temperature as shown in Fig. 8.6, the test was allowed to be continued for 

an extra 20 minutes before firing stopped. The impermeability of the CDMC panel was 
examined by noting any gaps, cracks or fissures that were visible on the unexposed face 

of the specimen (BS476, part 20,1987). 

A slight distortion and a few micro-cracks on the exposed surface of the CDMC were 
observed after the fire test (Fig. 8.7). This may be due to the shrinkage caused by further 

release of water (or moisture), or more likely, the micro-cracking process took place 
during cooling down to the room temperature. 

8.5 Material reaction to fire 

The characteristics and levels by which the material behaves in a fire situation can be 

applied to many application areas. All of these can be well judged by measuring the 
following capabilities of the material: ignite-ability, rate of flame spreading on a surface, 
rate of heat release, smoke generation, the nature of combustion gases and their 

proportions under given exposed conditions and the release of harmful products. Since 

the fire is a very complex phenomenon, its behaviour and effects depend upon a number 
of interrelated factors. The philosophy of "reaction to fire" is explained in ISO/TR 3814 

and ISO/DIS5660. 

The stability of a CDMC was measured by the Cone Calorimeter. There was no ignition 

recorded on the CDMC and the mass loss was only small amount of water physically and 
chemically combined with ceramic matrix. For few specimens, there are tiny areas (<1 
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cml) where the surface rose up a few millimetres in extended testing times. An increase in 

thickness would in turn, increase the thermal insulation performance. 

The test results of heat reaction include a total heat release (THR), a heat release rate 
(HRR), a CO production rate and a yield, a C02 production rate and a yield, the 

effectiveness of heat combustion, mass stability, mass loss rate and a rate of smoke 

released. In order to have better understanding of the fire performance of the material 
under the cone radiator, we compared them with a group of phenolic DMC under similar 
or lower heat flux condition. The results proved that the overall fire performance of the 
CDMC is better than those of the phenolic DMC which has always been considered as 

one of the best polymer composites in aspect of fire performance. The phenolic DMC 

with about 25%(vol. ) of glass fibre was given as a sample plate by the TBA, a British 

composites manufacturer. The results of the Cone Calorimeter study are presented in Fig. 
8.8 - Fig. 8.17. 

e The total heat released and the heat release rate (THR, HRR) 

The THR is calculated by measuring oxygen concentration and flow rate in the 

combustion product stream. In the THR vs. time curves, the heat release rate for the 
CDMC was almost zero compared with the heat released from the phenolic DMC, as 
shown in Fig. 8.8. 

* CO production rate and yield 

CO yield during tests for the CDMC was zero. The CO production rate for the phenolic 
DMC is much higher compared to that of the CDMC, although both materials gave very 
low rate of the CO production, displayed in Fig. 8.9 and 8.10. The higher CO production 
rate for the P-DMC is due to a incomplete burning of the phenolic resin structure. 

0 C02production rate and yield 

The CDMC kept at vary low level of C02production. C02production rate for phenolic 
DMC at first 200 seconds was quite high and gradually levelling off. 

The general trend of CO. generated in different materials is the same with those results 

achieved in CO production rate. Phenolic DMC generated much more CO. compared 

with those of CDMC, shown in Fig. 8.11 and 8.12. Trends of curves were similar 
between C02 production rate and HRR, since C02 generated was covering the main 

stream of burned gases which was detected from the exhausting system. 
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Naturally, the C02 yield for phenolic DMC is much higher than that of the CDMC 

especially at the period of 1200 seconds. After this, the phenolic matrix was burned off. 

9 The effective heat of combustion (EHQ 

The CDMC is almost zero compared with the phenolic DMC in the effective heat of 
combustion. The EHC of phenolic DMC is around 15 to 25 MJ/kg. The EHC curves of 
the CDMC and the phenolic DMC are shown in Fig. 8.13. 

e Mass stability (MS) and mass loss rates (MLR) 

The CDMC lost mass (water release) slowly during test. Stability and mass loss rates are 
shown in Fig. 8.14 and Fig 8.15. A phenolic DMC loses its mass constantly during the 
whole test of 1200 seconds after the initial sharp loss at 200 seconds. The mass loss 
became slow after 400 seconds for the CDMC and gradually levelled off and kept stable. 
Ile DSC results indicated a loss of water in the CDMC after 110 T from the matrix. 
DSC results also show a loss peak at 250 T for water from the fillers. These water 
emissions account for the small mass loss observed in the Cone Calorimeter tests. Weight 
loss in the phenolic composites is primary result of thermal decomposition of the 
polymer. 

4, Rate of smoke released (RSR) 

Rate of smoke release for the CDMC was zero at all the time during the test. For a 
phenolic DMC, the rate of smoke release at first 200 seconds is high, after this the release 
rate decreased to very low level as shown in Fig. 8.16. 

4, Specific extinction area (SEA) 

The CDMC has the constant extinction and never being ignited actually during the fire test 
in Cone Calorimeter. Specific extinction area for the CDMC and the P-DMC is illustrated 
in Fig. 8.17. However, the phenolic DMC contains the phenolic matrix. Under intensive 

radiation, it ignited and kept burning until the polymer burned off. But phenolic 
composites have a common advantage over most of other polymers, as they are self 
extinguishing when the outside heat/fire source is removed. 
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8.6 Summary 

Overall heat resistance of the CDMC is much better in comparison with the phenolic DMC 

and other polymer composites. The types of composites tested are listed in Table 8.2. The 

average results of different composites as a total feature are listed in Table 8.3. It appeals 
that the smoke emission (ml/kg) of the CDMC is 8 m2/kg; compared with polyester 
SMC/DMC (239 m2/kg); fire retardant GRP (993.7 m2/kg). Very small amount of smoke 
emission in CDMC might come from the sizing system coated outside of glass fibre 
(about 0.3 % in the total CDMC composition). The peak release rate for the CDMC is 2.0, 

compared with polyester SMC/DMC (282.3); phenolic SMC/DMC (224); fire retardant 
GRP (180). 

One of samples of the fire proof CDMC after Cone Calorimeter test under the heat flux of 
75 Mrný for over 1.0 hour is shown in Fig. 8.18. On the left hand side the sample 
shows exposed face to a cone heat (cone radiator temperature is around 900 - 1000 9C 

with heat flux >75 kW/M 2) 
, and the right hand side sample shows the unexposed face. 

The Al foil was used for a preventing of the heat loss. Under this heat flux, the sample's 
dimension kept stable, no sign of crack occurred. 

The fire resistance of the CDMC tested shows that the ceramic moulding compound 

products can perform exceptionally well in delaying the temperature rise on the unexposed 
face without combustion on the inner face. Naturally the ceramic panels would 
outperform any equivalent polymeric composites panels such as the phenolic matrix 
composites. 

Ile CDMC is effectively incombustible. the heat release measured was negligible and 
only trace amount of smoke and carbon dioxide were produced. 71be results were 
effectively constant for all compositional changes. 
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Table 8.1 A list of dimensions and testing perimeters of the CDMC and other composite 
samples for the fire penetration test. 

Type of panels Dimension (mmý) Temperature range in fire test 
Starting('C) End('C) 

CDMC with 300xl7Ox3.0 20 960-1100 
22.6%(vol. ) GF 

CDMC with 300xl7Ox3.0 20 700 
22.6%(vol. ) GF 
Phenolic based 300xl7Ox4.0 20 960 

DMC with 20%- 
25%(wt. ) GF 
Glass/phenolic 300xl7Ox8.0 I 20 I 900 I 

laminate 

Table 8.2 A list of different materials subjected to the Cone Calorimeter tests. The 

dimension of sample was 100 x100 rnmý. 

DMC Matrix Thickness 
(mm) 

Heat flux 
(kW/M2) 

CDMC with 15%(vol. ) GF Ceramic resin 3.5 75 

UP DMC with 28%(wt. ) GF UP resin 4.0 75 
Phenolic DMC 
with 20-25%(wt. ) GF Phenolics 4.0 75 

Fire retardant GRP UP resin 4.0 75 

PVC foam PVC 10 1 75 

PMMA PMMA 4.0 1 75 
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Table 8.3 A listed summary of the Cone Calorimeter tests for the CDMC, P-DMC, UP- 
DMC, PVC foam and PMMA. 

Materials Time to 
ignition 

(s) 

Peak heat 
release 

rate 
(kW/M2) 

Total 
heat 

released 
(U) 

Smoke 
emission 
(m2/kg) 

Mass 
loss 
M 

CDMC No ignition 2.0 0.0 0.8 

P-DMC 48 224 309.8 239 

UP-DMC 34 282.3 760.8 985 

UP/CDMC-2.0% UP No ignition 3.0 0.2 15 19.64 

PVC Foam 1.0 272.6 153.5 1232.3 84.12 

PMMA 
-1 

24.0 94 583.7 176 

= 

During the testing, the Cone Calorimeter operated with the heat flux of 75 kW/m2. 

The materials tested were the CDMC, the phenolic DMC, the polyester DMC, the polymer added CDMC, 

the PVC and PMMA. 
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Fig. 8.2 The surfaces of specimen after fire resistance test. ']'he left sample panel is the 

exposed surface which under the maximurn temperature of 1000 'C for over 1.0 hour. 

The right hand is the same panel non-exposed surface. 
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I' Igo. 8.3/A 

3/Ii 

Fig. 8.3 (A and 13) SEM graphs of the CDMC subjected to a fire for about IW minutes. 
The furnace temperature raised up to about IIM 'C. Fig. 8.3/A shows the comparison of 

original glass fibres (right) and fired fibres(left) near the unexposed surface in the cross 

section ofthe tested panel. Fig. 8.3/13 shows original fibres (right) and fired fibres (left) 

in the exposed surface facing fire. 
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Fig. 8.6 IMO fire penetration test for the CDMC, the temperature of the panel non- 

exposed to fire was measured wMe the temperature inside the furnace stabled at 700 'C. 

Curve I was standard IMO temperature raising curve inside the furnace-, curve 11 was 

stabilised temperature curve (700 'C) inside the fitrnace for this particular test. 
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Fili. 8.7 This fire tested specimen is corresponding to Fig' 8.6. The pariel had been 

subjected to a temperature of 7M 'C for more than 80 minutes. And this picture indicates 
the status ofthe panel after fire test. Left is the surface exposed to fire, right hand is the 

non-exposed surface. 
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Fig. 8.18 A typical fire proof ceramic moulding composite sample tested by the Cone 

Calorimeter under the heat flux of 75 Mrn2 for more than one hour. The sample on the 
left hand side shows the exposed surface to the heat, and the right hand side shows the 

unexposed surface of same sample. The Al foil was used for insulation and was molten in 

central area during test. 
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Chapter 9 

POTENTIAL APPLICATIONS 

9.1 Introduction 

In order to validate the applicability of the ceramic dough moulding compound, a number 
of test components were manufactured. A combination of samples with complex shapes 

was produced using wherever possible standard moulds and moulding procedures that 

would be compatible with current practices in the polymer composites industry. 

The parts selected for this study include a simple single curvature heat shield, a complex 
heat protection cup, both based on current automotive products, and a double curvature 
track line fairing which is a test aerospace component. 

9.2 The heat shield 

The heat shield was intended to be a direct equivalent of a current production item 

manufactured from a phenolic moulding compound. A schematic drawing of the heat 

shield is shown in Fig. 9.1 and the tooling used for moulding heat shield is shown in Fig 

9.2. The real part is equipped with a thin aluminium foil layer on one surface to provide 
heat reflectivity. 

The heat shield is produced using a simple metal tool with minimal pressure induced by 

clamping a shell female tool surface to a solid male tool. To produce the same part from 

the CDMC, no change in tooling was considered. The aluminium foil was laid down on 
the female shell tool and acted as a release film. A charge of the CDMC, of 40 - 50 g was 
applied by hand onto the tool, covering approximately 60 -80 % of the tool. A release film 

of PTFE was applied to the surface of the male tool. The tool was then closed manually 
and the complete tool and moulding compound assembly was placed in a heated oven at 
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140 T for 30 - 60 minutes to cure the part. The part demoulded easily after cooling to 

room temperature, and two heat shield products are presented in Fig. 9.3. 

Examination of a cross section of a moulded heat shield revealed good bonding between 

the aluminium foil and the moulding compound, as shown in Fig 9.4. The CDMC was 

observed to contain a high level of porosity which was expected due to the minimal 

pressures applied in the moulding operation. 

The test parts were examined by an automotive component supplier and subjected to 

envir0runental testing and basic operational trials. The results of those trials are 

proprietary to the company but the basic outcome was that the CDMC heat shield 

outperformed existing phenolic parts and passed all durability tests that could be required 
for commercial use of the system. Long tenn environmental cycling did not result in any 
degradation of the CDMC but did cause slight corrosion in the aluminium foil which is 

indicated in Fig. 9-5. 

9.3 The heat shield cup (HSC) 

The second part to be produced was another heat shield but this time a more complex item 

resembling a cup in shape. Matched metal tooling for this part was supplied by a 

commercial manufacturer. The production item again was a phenolic moulding compound 
but this time produced under high pressure. The procedures for moulding were to apply a 

charge of the CDMC , of 100 g, to the female tool by hand, position the male tool section 

onto the female and close the tool slowly in a heated pressure at temperatures of 140 T. 

The mould was held at that temperature after closing for 1.0 hour. 

This part was moulded easily and the final product was of high quality with low void 

content. The complex shape of the part was readily adopted by the moulding compound. 

The problem with this part was that a method for achieving good release from the tool 

was not available in the time scale and no complete part could be lifted from the tool 

without damage. Mouldings had to be undertaken using a release film which did not 

conforrn with the tool shape resulting in parts that failed to meet aesthetic standards due to 

creasing and wrinkling in the film, as indicated in Fig 9.6. 
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However, the exercise did confirm that well consolidated parts of complex shape were 
feasible if the mould release problem is solved. 

9.4 The track line fairing 

The track line fairing is a test part used in a development of aerospace materials and 

simulates a full scale fairing used in aircraft to house moving mechanisms associated with 
flaps and other control surfaces. There is no equivalent commercial product but the 

tooling that was available, a matched set of monolithic graphite tools have been used 

previously to mould test parts from Carbon-PEEK thermoplastic composites. 

The original tool had been slightly damaged and as such a complete fairing could not be 

produced. However, by again applying a charge of more than 300 g of material covering 
60 % of the surface, and closing the tool slowly at 140 T, a fully consohdated part was 

achieved. The tool closure pressure was around 8.0 NTa (80 Bar) during moulding. A 

release spray of PTFE worked adequately in this situation. The successfully moulded 

part is shown in Fig. 9-7. 

CDMC 247 



Chapter 9 Potential Applications 

9.5 Summary 

All moulding trials showed that parts of varying complexity could be moulded by using 
the CDMC. The degree of porosity and strength in the moulded parts depended on the 
applied temperatures and pressures. The compound was capable of flowing and faithfully 

reproducible for the details of the mould. However, when using metal tools, it became 

apparent that mould release was a major problem and this issue, which was outside the 
scope of this prograrrune, needs to be addressed if the material has any significant 
commercial future. 
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Fig. 9.1 A schematic drawing of the heat shield. 

AA 

9.2 The tooling used for manufacturing the heat shield. 
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Fig. 9.4 The interface between the ceramic matrix and Al foil, shows a good bonding. 

The heat shields without environmental tests generally presented good interface. 

Fig. 9.5 SEM examination of the CDMC heat shield after standard industrial heat and 
chemical corrosion tests for car components. The Al 1'011 was corroded and few cracks 
were generated frorn the Al foll and might extend to the interface between Al film and 
ceramic matrix. On the top right hand, both present the pores matrix and glass fibre 
bundle remained in an original conditions inside the tested specimen. 
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Fig. 9.6 A few HSCs moulded frOn' the CDMC, top photo shows two halves of 

complicated I-noulds used. 
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Chapter 10 

CONCLUSIONS 

10.1 Overview of the research 

Conclusions 

A silicate based glass fibre moulding compound is a composite which combines 
exceptionally high thermal resistance and reasonable mechanical properties. It overcomes 
some of the difficulties in manufacture of traditional ceramic composites with complicated 

shapes. With chopped fibre reinforcement, a CDMC can be designed with different 
functions as application requires. Compared with the traditional ceramics and glasses, the 
CDMC possesses the features of using low cost raw materials, low cost in manufacture, 

improved ductility and design versatility. 

As the reinforcement in the CDMC, the chopped AR-glass fibres were used in 

consideration of the cost. The continuous development of AR-glass fibres have provided 
suitable low cost alkaline resistant reinforcement for the composite. Liquid metallic 
silicates as the main binder, with additional mineral fillers which functionalised for special 

properties, constitute of the matrix system. 

The chopped fibre composites are an ideal choice for products with complicated shapes or 
details which require fire and heat resistance. The un-cured composites can flow within a 
closed mould, and forin the desired shape under certain temperatures. The mechanical 
properties of the moulded parts depend on the fori-nulation of the composites, and the 

processing routes. The strength of the moulded parts was not only dependent on the 
formulation of the composites, but also on the manufacturing methods and the moulding 
conditions. This is due to the changes in physical properties such as water content and 
density in the moulded parts. 
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Through this research, a formulation for optimum processibility and mouldibility of the 

material has been achieved by using the traditional DMC manufacturing and moulding 

processes. More freedom in material selection, design of fibre matrix combination, 

viscosity control and moulding process has been realised. 

10.2 Background of the research 

Polymer dough moulding composites have been well developed for more than 40 years. 
The raw materials are normally glass / carbon fibres with polymer matrices such as 

unsaturated polyester, epoxy or phenolics. More and more thermoplastics are also used as 

matrix systems in order to provide special mechanical properties and ftinctionality. These 

composites have been used in many areas and occupy big share in plastics and metaffic 

application markets. 

The polymer based composites can only work within the temperature range 100 - 200 'C, 

which is a limiting temperatures for their applications. However, there is a market 

requirement for materials possessing a working temperature over 200 'C, even up to 1000 
'C. This is the major reason for developing ceramic silicate based composites. Metallic 

silicates are one of the many choices for the matrix with low cost and easy proccessibility 

at relatively low moulding temperatures. For their new material concept with new 

processing route, problems encountered at the early stages of the research was that no 
background information was available for processing. 

10.3 Materials and compounding 

Material selection and compounding are so important that they determine the basic 

mechanical and thermal properties. After the confirmation of the basic composition of the 

ceramic dough moulding compound, a traditional DMC processing route for the CDMC 

was investigated in the early stage of this research. 

Since the compounding process involves the matrix flow in the processing equipment, 

and more importantly wetting out the reinforcing fibres, the rheological properties of the 

ceramic matrix was investigated and it was identified as a Non-Newtonian slurry with an 

important property of plastic deformation. 'Me viscosity increment of the matrix during 
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moulding is an apparent reflection of the silicate polymerisation, which makes the 

compounding and moulding process possible. A viable matrix has been formulated by 

following the viscosity effects generated by hardeners and mineral fillers. Many 

formulations were developed with different advantages at the early research stage and, 
later, mechanical and thermal properties were studied. A general formulation was 

concentrated on in order to produce the best viscosity - processing relationship and 

compatibility with the new chopped glass fibre, AR62/2. 

The viscosity of the matrix slurry played an important role in processing the CDMC. And 

the viscosity increase for CDMC is ideal for the stage of moulding. The matrix initial 

viscosity was, as expected, low enough to wet out the chopped glass fibre. Then the 

viscosity of premixed paste (> 1XI06 CPS = IX103 kg/m-s = IX103 Pa-s) can increase 

shortly for following moulding. 

The followings are some important factors for material's viscosity: 

'Me viscosity increase rate in the compounding has been matched to the moulding 

requirements. With Fabutit 320, the viscosity of the matrix slurry was low ( 3000 to 

5000 cps), providing good condition for matrix to impregnate the fibre. About 30 to 40 

minutes after mixing, the viscosity started to increase until it reached 1.0 x 10' cps 

after more than few hours (or few days depending on formulation and environmental 

condition) when it is ready for moulding. The viscosity of the matrix continues to raise 

very slowly in two to three months which would be the suitable time for the moulding 

process. 

The fillers also influence the viscosity. Different fillers have different influences on the 

viscosity of the matrix system. 

The required viscosity increase rate for the CDMC in the compounding and moulding is 

adjustable. Pie use of glass fibre and mineral fillers keeps costs low, while the use of the 

ceramic matrix is environmentally clean and safe. 
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10.4 Moulding 

Conclusiong 

The CDMC is mouldable using selected moulding conditions. At lower temperatures of 
99 - 120 'C qualified products were difficult to obtain. This was linked to distortion of 
products if proper fixture was not employed after moulding. At medium temperatures of 
130 - 150 'C, the moulded products had a smooth surface finish. The moulding pressure 
can give contribution to control its porosity, density and surface quality, especially within 
the range of 8.0 MPa to 12.0 MPa. These controls in turn give qualified products. 'Me 

voids in the composites would remain at a minimum at this temperature and pressure 
range. Some thermal / shrinking residual stresses also generated micro-cracks in matrix 
and around fibres or fibre bundles, providing opportunities for the material to divert 
fracture energy and to increase the interfaces by fibre sliding and-pull-out. 

The moulding conditions were optimised through investigation of a temperature range of 
99 - 190 'C. By increasing the moulding temperatures, the de-watering time and the time 
for closing the mould was reduced. But there was an increment in porosity. This also 

resulted ia a better interfacial bonding and lad to a material brittleness. The cause of this 
phenomen"'of porosity may be due to the matrix shrinkage while water evaporating and 

rapid hardening at the elevated moulding temperatures. 

Ile severe corrosion presented when the moulding temperatures over 160 T for E-glass 
fibre. This type of corrosion has not been observed with AR-glass fibres in this 

concerned temperature range. However, an interfacial diffusion or good interfacial 
bonding between fibre and matrix has taken place for both E-glass and AR-glass when 
moulding over 170 'C. 
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10.5 Mechanical properties 

* General mechanical properties 

Ilie range of moulding temperatures for an ideal ceramic DMC was further defined by a 
comprorr: iise between brittleness and ductility. 

Moulding temperatures influence the mechanical properties of the CDMC. When moulded 
at lower temperatures (< 130 'Q, the CDMC demonstrated more ductile properties. At 
higher moulding temperatures (>170 'Q, the material tended to be brittle. Since the fibre 

sizing may be damaged in alkali media, there is an optimum range of moulding 
temperatures for achieving the best mechanical properties. This optimised moulding 
temperature range for AR-glass is in the range of 130 OC to 150 OC. 

The mechanical properties of the CDMC moulded at lower temperatures are also effected 
by time and post-curing. There were optimum properties after about 28 days of post 

curing in an ambient temperature. The properties of the CDMC moulded at higher 

temperatures appeared more difficult to control both in the moulding process and surface 

quality of the products. 

The mechanical properties effected by volume fraction of glass fibre were examined by 

use of a CDMC with AR50/1 glass fibre with a volume fraction range 5%(vol. ) - 
22.6%(vol. ). ne maximum strength of the material was reached by adding fibre volume 
fraction of 22.6%(vol. ). More volume fractions of glass fibre such as 30%(vol. ) have 

been tried and resulted in an uncompleted wetting out during compounding. Therefore, 

the properties of the CDMC effected by volume fraction of glass fibre were constrained 
below the 30%(vol. ). 

The resistance of sizing to alkali becomes a key issue in developing the mechanical 

properties. The CDMC with E-glass fibre when moulded at the temperature higher than 
160 'C severe corrosion occurred. The sizing agent around glass fibre sheath was 
damaged or washed away by alkalinity, which resulted in a fibre and matrix fused 

together. The modulus of the CDMC with E-glass fibre approached the modulus of pure 
matrix, while the strength decreased tremendously. Because of this, from this step 
forwards, the E-glass fibre was given up as the candidate reinforcement for the CDMC. 
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Instrumented falling weight impact tests were performed on the plates of the CDMC with 
AR50/1 glass fibre. The CDMC was moulded at different moulding temperatures and 

added with different volume fraction of the glass fibre. The key parameters studied were 
the force-time histories and energy absorption during impact fracture. The plates when 

moulded at lower temperature (99 - 150 'C) were not completely shattered and absorbed 

some energy, while the plates moulded at higher temperatures (160-190 'Q completely 

shattered and absorbed much less energy. 

The fracture mechanism of the CDMC was also analysed by the fracture pattern for 

flexural tested specimens. Individual glass fibre fractured end with mirror morphology 

after tensile fracture is studied. The fibre/matrix mismatching by thermal 

expansion/shrinkage Was played an important role when all these materials moulded at 
different moulding temperatures. The related interfacial shear strength between glass fibre 

and matrix was studied by the fibre push-out test using a micro-indentation machine. The 

results revealed that the higher interfacial shear strength was achieved when the moulding 

temperature was set higher. 

e OptirrUsed mechanical properties 

In order to optimise the mechanical properties, a new type of AR-glass fibre, AR62/2 was 

introduced and supplied by the fibre manufacturer which provided better processibility. 
The CDMC with this fibre achieved better mouldibility and good appearance compared 

with AR50/1 glass fibre. It is revealed that the better mechanical properties were also 

achieved by the CDMC with AR62/2 glass fibre. 

With different fibre lengths, the CDMC revealed that optimum tensile, flexural and impact 

properties can be obtained with a chopped fibre length of 12 mm (AR62/2 fibre). The 

fibre volume fractions of the material were also examined from 15% to 27%(vol. ) by 

using 12 nim fibre. It is found that the composite with fibre volume fraction of 
22.6%(vol. ) demonstrated the best mechanical properties under the moulding temperature 
140 - 150 'C and pressure 8- 10 MPa. 

Maximum flexural properties were reached at the volume fraction of 22.6%(vol. ), with 
the value of 120 MPa for flexural strength and 39.7 GPa for modulus. The highest 

tensile properties of the CDMC were obtained with 22.6%(vol. ) glass fibres as well. It 

presented increased ductility ( maximum strain to failure) over other volume fractions. 
The higher fibre volume fraction such as 27%(vol. ), caused problems in obtaining an 
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uniforin compound prior to moulding. The disappointing mechanical properties are 
probably a consequence of the non-homogeneous compound with areas of low fibre 
fractions. Tensile stress-strain curves are also obtained with different volume fractions. 

Tensile fractures revealed extensive fibre pull-out and fibre bridging, randomly crossing 
cracks, which provided the possibility for preventing catastrophic failures. 

The behaviour of the interface is affected by sizing on the fibre and the moulding 
temperatures. The exact mechanism of sizing under different temperatures is beyond our 
control and knowledge due to commercial confidentiality. It seemed that within the 
examined range of moulding temperatures (99 'C - 190 'Q, different interfacial shear 
strengths were produced. It has been proved that higher moulding temperatures produced 
stronger interfacial bond strength, while under the lower moulding temperatures produced 
lower interfacial shear strength or weak bond. The very weak bond could be achieved by 

moulding process at low temperature as low as 99 'C. The temperature range of 130 - 
150 IC has been selected for the CDMC moulding as the better temperature range for 

overall mechanical properties. Some preliminary results were successful in indicating an 
interfacial shear strength of 22 to 37 MPa with 5011 fibre, which is depending on the 

processing temperatures. 

At higher moulding temperatures, the strongly bonded CDMC becomes brittle regardless 

of the glass fibre used. The problem here may be the weak interface (sizing) disappeared 

and then a strong interface fonned. The fibre / matrix interface in the composites played 

an important role in determining the mechanical properties, especially the impact 

properties. 

'Me impact properties of the CDMC with different volume fraction of glass fibre of 15- 

27%(vol. ) were examined. The specimen with 27%(vol. ) glass fraction absorbed similar 

amount of energy with 22.6%(vol. ) specimens. Quite different with flexural and tensile 

properties, the material's impact properties are a dependent of fibre volume fraction and 
the type of glass fibre. 

The maximum energy absorption data for the CDMC has been compared with an energy 

absorption master curves generated from varies polymer composite materials with glass 
fibre and carbon fibre reinforcements. For general glass fibre/polymer composites, if the 

specimens are of a similar size to those tested, a master curve can be constructed linking 

absorbed energy with specimen thickness multiplied by volume fractions. It is observed 
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that the value of energy absorption of the CDMC is more close to the mast curve of the 

carbon fibre / polymer composites and lower than glass fibre / polymer composites. 

From the observation of large amount of SEM graphs of the AR62/2 glass fibre CDMC, it 

could be further explained that the matrix cracks generated by partially fibre / matrix de- 
bonding might be caused by the difference in coefficient of the thermal expansion during 

moulding at certain temperature range. This thermal mis-match between fibre and matrix, 
later led to the fibre sliding, fibre pull-out when specimens under the mechanical load. 
These processes are followed by fibre bridging, which may prevent the CDMC from 

catastrophic failures such as shattering in impact tests as well. 

I'he optimised glass fibre (12 mm AR62/2 fibre) in formulation, together with the 

optimised range of moulding conditions for compounding / manufacturing ideal CDMC 

provide a base platform for the design of the CDMC with proper ductility and 
functionality. 

nere are some evidences that the elastic proper-ties of the composites are determined by 

fibre volume fractions. And the failure of fibres and specimens may be attributed to void 

content (negative effect) and residual stresses (positive effect). 

Although the research was mainly emphasised on the CDMC processing, the problem of 
"brittleness in ceramics" has also been studied. However, over 30 years research into 

improving ceramic toughness, it seemed that ceramic matrices combining with fibres has 

been one of the best routes to solve the problem. The interesting thing is that the theories 

which have been developed seemed compatible with this CDMC composites involved in 

this research work. 

Generally speaking, the improvement in the mechanical failure processes for the CDMC 

as so called pseudo plastic deformation involves matrix cracking, fibre de-bonding, 
followed extensive fibre pull-out, then fibre fracture or bridging. This research work has 

primarily proved that through these mechanisms, the fibre reinforced mineral silicate 

composites can stop the catastrophic failure or shattering under mechanical loads or under 
different impacting forces. 
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10.6 Fire and thermal properties 

Fire and thermal properties of the CDMC were investigated by using fire penetration test 

and matenal's reaction to fire / heat by the Cone Colorimeter test. Meanwhile, a phenolic 
based DMC and other polymers were also tested at same conditions for comparison. 

The data of fire resistance for the CDMC tested shows that it performed exceptionally well 

in delaying the temperature rise on the unexposed face without combustion on the inner 

face. It is natural that the ceramic panels would outperform any equivalent polymeric 

matrix composite such as the phenolic matrix composites. Although fire retardant GRP 

has improved fire properties, such as peak heat release rate, total heat release and oxygen 

index, these sacrifice the properties of smoke emission, and toxicity, etc. 

The CDMC also shows the better mass stability in resistance of the fire penetration 

compared to those polymer matrix DMC. There was no ignition for the CDMC in 

comparison with a polyester SMC/DMC, the phenolic SMC/DMC, and a fire retardant 
FRP/GRP. Compared with their original composites, the fire retardent polyester DMC 

and phenolic SMCIDMC need a longer ignition time due to 30 - 70% fillers in their matrix 

systems. 

Among the data generated by cone calorimeter tests for the phenolic DMC, polyester 
DMC, PVC and PMMA, the CDMC is superior in almost all aspects. As a result of this, 

the overall fire and thermal properties of the CDMC outweigh the most known 

competitive composite systems based on polymeric matrix. 

10.7 Potential applications 

Potential applications have been investigated in Chapter 9 and moulding trails of a few 

products were discussed. The moulding for them were quite successful and samples of 

the moulded parts have been produced. 

Since the fire and thermal properties of the CDMC are superior to those of phenolic DMC 

or polymeric composites, the working temperature can be raised to 600 - 700 'C. 
Meanwhile, through the formulation design, the CDMC can be thermally stable and non- 
flammable in fire at elevated temperatures while absorbing large amount of heat energy. 
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10.8 Future work 

Future work should involve: 

Conclusions 

Simulation of compound flow during moulding, interfacial properties, toughness 

measurement. mould design and release agents for the industrialisation. 

9 Moulding 

Viscosity: matrix viscosity requires to be known at moulding temperature range for 

simulation of compound flow during moulding. 

Moulding temperatures: detailed relationship between moulding temperatures and 
durability of fibre / matrix interface. 

Mould release: suitable release agents need to be investigated or developed for moulding 
complicated components. 

Mould design: based on the feature of the CDMC. 

* Mechanical properties 

interfacial properties: investigating the interfacial functions of the ceramic moulding 

composites. Measurement of toughness of the materials: relationship with interface. 

Environmental test: weather conditions and chemical corrosive conditions. 

9 Material's elastic modulus 

A suitable equation can be developed in order to evaluate elastic properties of the chopped 
fibre ceramic composites. In a broad category, the chopped fibre reinforced cement, 

concrete, glass and most of ceramics should also fit into the same equation. It may be 
developed into two direction, one is the Ef >> Ern, such as ceramic matrix with carbon 
fibres or SiC fibres, the other one should be Ef is similar to E,,,. , as ceramic matrix with 
glass fibre and other similar modulus fibres. 
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For example, glass reinforced ceramics such as glass and cernentatious matezials should 
belong to the class of E, similar to E.. ; carbon fibres (Bahl, Shen, Lavin and Ross, 1998) 

or SiC fibre (Yang HH, 1992) or other high modulus fibre reinforced glass and low 

modulus ceramics should still belong to the Ef >> En category. But whether or not Cox or 
Halpin-Tsai equations are suitable for this category remains to be a question and should 
be investigated. 

CDMC 264 



Chapter 10 Conclusions 

Through the development of the CDMC, a new and simple manufacturing process has 
been established with a group of low cost raw materials. Compared with advanced 
ceramic materials and their manufacturing routes, the CDMC is much more economical 
and efficient. It can also be a competitive material to polyester and phenolic moulding 
composites due to its fire resistance and thermal insulation properties at elevated 
temperatures. 
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