11 research outputs found

    EUV microexposures at the ALS using the 0.3-NA MET projectionoptics

    Get PDF
    The recent development of high numerical aperture (NA) EUV optics such as the 0.3-NA Micro Exposure Tool (MET) optic has given rise to a new class of ultra-high resolution microexposure stations. Once such printing station has been developed and implemented at Lawrence Berkeley National Laboratory's Advanced Light Source. This flexible printing station utilizes a programmable coherence illuminator providing real-time pupil-fill control for advanced EUV resist and mask development. The Berkeley exposure system programmable illuminator enables several unique capabilities. Using dipole illumination out to {sigma}=1, the Berkeley tool supports equal-line-space printing down to 12 nm, well beyond the capabilities of similar tools. Using small-sigma illumination combined with the central obscuration of the MET optic enables the system to print feature sizes that are twice as small as those coded on the mask. In this configuration, the effective 10x-demagnification for equal lines and spaces reduces the mask fabrication burden for ultra-high-resolution printing. The illuminator facilitates coherence studies such as the impact of coherence on line-edge roughness (LER) and flare. Finally the illuminator enables novel print-based aberration monitoring techniques as described elsewhere in these proceedings. Here we describe the capabilities of the new MET printing station and present system characterization results. Moreover, we present the latest printing results obtained in experimental resists. Limited by the availability of high-resolution photoresists, equal line-space printing down to 25 nm has been demonstrated as well as isolated line printing down to 29 nm with an LER of approaching 3 nm

    Critical challenges for EUV resist materials

    Full text link
    Although Extreme ultraviolet lithography (EUVL) is now well into the commercialization phase, critical challenges remain in the development of EUV resist materials. The major issue for the 22-nm half-pitch node remains simultaneously meeting resolution, line-edge roughness (LER), and sensitivity requirements. Although several materials have met the resolution requirements, LER and sensitivity remain a challenge. As we move beyond the 22-nm node, however, even resolution remains a significant challenge. Chemically amplified resists have yet to demonstrate the required resolution at any speed or LER for 16-nm half pitch and below. Going to non-chemically amplified resists, however, 16-nm resolution has been achieved with a LER of 2 nm but a sensitivity of only 70 mJ/cm{sup 2}

    Adding static printing capabilities to the EUV phase-shifting point diffraction interferometer

    No full text
    Black and white 8x10 acetate negativehttps://digitalmaine.com/arc_george_french_photos_cf/1458/thumbnail.jp
    corecore