2,804 research outputs found
On the Explosion Mechanism of SNe Type Ia
In this article we discuss the first simulations of two- and
three-dimensional Type Ia supernovae with an improved hydrodynamics code. After
describing the various enhancements, the obtained results are compared to those
of earlier code versions, observational data and the findings of other
researchers in this field.Comment: 7 pages, 4 figure
Libpsht - algorithms for efficient spherical harmonic transforms
Libpsht (or "library for Performant Spherical Harmonic Transforms") is a
collection of algorithms for efficient conversion between spatial-domain and
spectral-domain representations of data defined on the sphere. The package
supports transforms of scalars as well as spin-1 and spin-2 quantities, and can
be used for a wide range of pixelisations (including HEALPix, GLESP and ECP).
It will take advantage of hardware features like multiple processor cores and
floating-point vector operations, if available. Even without this additional
acceleration, the employed algorithms are among the most efficient (in terms of
CPU time as well as memory consumption) currently being used in the
astronomical community.
The library is written in strictly standard-conforming C90, ensuring
portability to many different hard- and software platforms, and allowing
straightforward integration with codes written in various programming languages
like C, C++, Fortran, Python etc.
Libpsht is distributed under the terms of the GNU General Public License
(GPL) version 2 and can be downloaded from
http://sourceforge.net/projects/libpsht.Comment: 9 pages, 8 figures, accepted by A&
Type Ia Supernova Explosion Models: Homogeneity versus Diversity
Type Ia supernovae (SN Ia) are generally believed to be the result of the
thermonuclear disruption of Chandrasekhar-mass carbon-oxygen white dwarfs,
mainly because such thermonuclear explosions can account for the right amount
of Ni-56, which is needed to explain the light curves and the late-time
spectra, and the abundances of intermediate-mass nuclei which dominate the
spectra near maximum light. Because of their enormous brightness and apparent
homogeneity SN Ia have become an important tool to measure cosmological
parameters. In this article the present understanding of the physics of
thermonuclear explosions is reviewed. In particular, we focus our attention on
subsonic (``deflagration'') fronts, i.e. we investigate fronts propagating by
heat diffusion and convection rather than by compression. Models based upon
this mode of nuclear burning have been applied very successfully to the SN Ia
problem, and are able to reproduce many of their observed features remarkably
well. However, the models also indicate that SN Ia may differ considerably from
each other, which is of importance if they are to be used as standard candles.Comment: 11 pages, 4 figures. To appear in Proc. 10th Ann. Astrophys. Conf.
"Cosmic Explosions", Univ. of Maryland 1999, eds. S.S. Holt and W.W. Zhan
Carbon Ignition in Type Ia Supernovae: An Analytic Model
The observable properties of a Type Ia supernova are sensitive to how the
nuclear runaway ignites in a Chandrasekhar mass white dwarf - at a single point
at its center, off-center, or at multiple points and times. We present a simple
analytic model for the runaway based upon a combination of stellar
mixing-length theory and recent advances in understanding Rayleigh-Benard
convection. The convective flow just prior to runaway is likely to have a
strong dipolar component, though higher multipoles may contribute appreciably
at the very high Rayleigh number (10) appropriate to the white dwarf
core. A likely outcome is multi-point ignition with an exponentially increasing
number of ignition points during the few tenths of a second that it takes the
runaway to develop. The first sparks ignite approximately 150 - 200 km off
center, followed by ignition at smaller radii. Rotation may be important to
break the dipole asymmetry of the ignition and give a healthy explosion.Comment: 14 pages, 0 figures, submitted to ApJ, corrected typo in first
author's nam
Direct Numerical Simulations of Type Ia Supernovae Flames II: The Rayleigh-Taylor Instability
A Type Ia supernova explosion likely begins as a nuclear runaway near the
center of a carbon-oxygen white dwarf. The outward propagating flame is
unstable to the Landau-Darrieus, Rayleigh-Taylor, and Kelvin-Helmholtz
instabilities, which serve to accelerate it to a large fraction of the speed of
sound. We investigate the Rayleigh-Taylor unstable flame at the transition from
the flamelet regime to the distributed-burning regime, around densities of
g/cc, through detailed, fully resolved simulations. A low Mach number,
adaptive mesh hydrodynamics code is used to achieve the necessary resolution
and long time scales. As the density is varied, we see a fundamental change in
the character of the burning--at the low end of the density range the
Rayleigh-Taylor instability dominates the burning, whereas at the high end the
burning suppresses the instability. In all cases, significant acceleration of
the flame is observed, limited only by the size of the domain we are able to
study. We discuss the implications of these results on the potential for a
deflagration to detonation transition.Comment: submitted to ApJ, some figures degraded due to size constraint
Fast Two-Qubit Gates in Semiconductor Quantum Dots using a Photonic Microcavity
Implementations for quantum computing require fast single- and multi-qubit
quantum gate operations. In the case of optically controlled quantum dot qubits
theoretical designs for long-range two- or multi-qubit operations satisfying
all the requirements in quantum computing are not yet available. We have
developed a design for a fast, long-range two-qubit gate mediated by a photonic
microcavity mode using excited states of the quantum dot-cavity system that
addresses these needs. This design does not require identical qubits, it is
compatible with available optically induced single qubit operations, and it
advances opportunities for scalable architectures. We show that the gate
fidelity can exceed 90% in experimentally accessible systems
Nucleosynthesis in multi-dimensional SNIa explosions
We present the results of nucleosynthesis calculations based on
multidimensional (2D and 3D) hydrodynamical simulations of the thermonuclear
burning phase in SNIa. The detailed nucleosynthetic yields of our explosion
models are calculated by post-processing the ejecta, using passively advected
tracer particles. The nuclear reaction network employed in computing the
explosive nucleosynthesis contains 383 nuclear species. We analyzed two
different choices of ignition conditions (centrally ignited, in which the
spherical initial flame geometry is perturbated with toroidal rings, and
bubbles, in which multi-point ignition conditions are simulated). We show that
unburned C and O varies typically from ~40% to ~50% of the total ejected
material.The main differences between all our models and standard 1D
computations are, besides the higher mass fraction of unburned C and O, the C/O
ratio (in our case is typically a factor of 2.5 higher than in 1D
computations), and somewhat lower abundances of certain intermediate mass
nuclei such as S, Cl, Ar, K, and Ca, and of 56Ni. Because explosive C and O
burning may produce the iron-group elements and their isotopes in rather
different proportions one can get different 56Ni-fractions (and thus supernova
luminosities) without changing the kinetic energy of the explosion. Finally, we
show that we need the high resolution multi-point ignition (bubbles) model to
burn most of the material in the center (demonstrating that high resolution
coupled with a large number of ignition spots is crucial to get rid of unburned
material in a pure deflagration SNIa model).Comment: Accepted for A&A, 14 pages, 11 Figures, 2 Table
A new model for deflagration fronts in reactive fluids
We present a new way of modeling deflagration fronts in reactive fluids, the
main emphasis being on turbulent thermonuclear deflagration fronts in white
dwarfs undergoing a Type Ia supernova explosion. Our approach is based on a
level set method which treats the front as a mathematical discontinuity and
allows full coupling between the front geometry and the flow field. With only
minor modifications, this method can also be applied to describe contact
discontinuities. Two different implementations are described and their
physically correct behaviour for simple testcases is shown. First results of
the method applied to the concrete problems of Type Ia supernovae and chemical
hydrogen combustion are briefly discussed; a more extensive analysis of our
astrophysical simulations is given in (Reinecke et al. 1998, MPA Green Report
1122b).Comment: 11 pages, 13 figures, accepted by A&A, corrected and extended
according to referee's comment
- …