722 research outputs found
No evidence for oncogenic mutations in guanine nucleotide-binding proteins of human adrenocortical neoplasms
G-Proteins are membrane-bound heterotrimeric polypeptides that couple receptor signals to second messenger systems such as cAMP. Recently, point mutations at 2 codons of the highly preserved alpha-chain of Gs, the adenyl cyclase-stimulating G-protein, were found in GH-secreting pituitary tumors. These mutations resulted in constitutively activated Gs alpha and high intracellular cAMP levels. In addition, point mutations at similar codons of a different G-protein, G(i) alpha 2, were reported in adrenocortical neoplasms, suggesting a potential role of this isoform in the genesis of these tumors. We reevaluated the frequency of constitutively activating point mutations in the alpha- chain of the stimulatory (Gs alpha) and inhibitory (G(i) alpha 2) G- proteins in human adrenocortical tumors. Seven adrenocortical carcinomas, 2 human adrenocortical tumor cell lines, and 11 adrenocortical adenomas were studied. Genomic DNA was purified from either frozen tumor tissue or paraffin-embedded sections. Using specific primers and the polymerase chain reaction, DNA fragments surrounding codons 201 and 227 (Gs alpha) and 179 and 205 (G(i) alpha 2) were amplified and visualized on a 2% agarose gel. In a second asymmetric polymerase chain reaction, using nested primers, single stranded DNA was generated using 1-10 microL of the initial amplification mixture and directly sequenced using the dideoxy chain termination method of Sanger. We found no mutations at codons 201, 227 and 179, 205 of Gs alpha and G(i) alpha 2, respectively, in the tumors studied. We conclude that previously identified oncogenic point mutations in the stimulatory and inhibitory alpha-chain of G-proteins do not appear to be present at high frequency in adrenal neoplasms. Thus, the mechanism(s) of tumorigenesis in these tumors is different from that in GH-secreting adenomas and may involve oncogenic mutations of other cell constituents
Gel chromatographic characterization of immunoreactive adrenocorticotropin in patients with ACTH hypersecretion
We investigated the molecular size of circulating immunoreactive ACTH by gel chromatography in patients with ACTH hypersecretion due to various disorders of the hypothalamic-pituitary-adrenal axis. 4 patients with Addison's disease, 2 with Nelson's syndrome, 4 with Cushing's disease, 6 with the ectopic ACTH syndrome (2 bronchial carcinoma, 1 medullary carcinoma, 1 metastatic islett cell carcinoma, 1 benign bronchial carcinoid and 1 patient with occult ectopic Cushing's syndrome) and 1 patient with hypersecretion of ACTH from a clinically nonfunctioning pituitary adenoma were studied. Analysis of the molecular size of immunoreactive ACTH was performed by gel chromatography on a Sephadex G-75 column (superfine, 100×1.5 cm) equilibrated with 1% formic acid. 2 ml fractions were collected and evaporated to dryness. The ACTH content of the recovered samples was determined by RIA. In Addison's disease, Nelson's syndrome and Cushing's disease the plasma showed a single peak of ACTH immunoreactivity at the expected position of 1–39 ACTH. In the ectopic ACTH syndrome the plasma of 4 patients revealed at chromatography at least one other peak eluting between the void volume and 1–39 ACTH suggestive of a high molecular weight form of ACTH whereas plasma of 2 patients showed only a single ACTH peak at the position of labeled 1–39 ACTH. The patient with a clinically non-functioning pituitary adenoma revealed a gel filtration pattern similar to the patients with ectopic ACTH syndrom and secretion of high molecular weight ACTH. We conclude that secretion of high molecular weight forms of ACTH is not a unique feature of the ectopic ACTH syndrome. It may therefore not serve as a marker of the ectopic Cushing's syndrome in the differential diagnosis of the ACTH dependent Cushing's syndrome. Vice versa, lack of high molecular weight ACTH does not exclude an ectopic source of ACTH secretion as cause of Cushing's syndrome
P53 mutations in human adrenocortical neoplasms
The mechanisms of tumorigenesis of adrenocortical neoplasms have not been elucidated as yet. However, loss of heterozygosity at chromosomal locus 17p has been consistently observed in adrenocortical cancer. p53 is a recessive tumor suppressor gene located on chromosome 17p. Mutations in the p53 gene play an important role in the tumorigenesis of diverse types of human neoplasms including breast and colon cancers. More than 90% of all mutations discovered in such tumors have been detected in 4 hot spot areas that lie between exons 5 and 8. In contrast to wild-type p53, mutant p53 accumulates intracellularly and can be easily detected by immunohistochemistry. We therefore investigated the frequency of p53 mutations in human adrenocortical neoplasms using molecular biology and immunohistochemistry techniques. Five patients with adrenocortical adenomas (5 female; ages 39-72 yr), 11 patients with adrenocortical carcinomas (8 female, 3 male; ages 15- 50 yr), and two adrenocortical tumor cell lines were studied. After DNA extraction from frozen tumor tissue or paraffin-embedded material, exons 5 through 8 were amplified using the polymerase chain reaction and directly sequenced by the dideoxy termination method. Immunohistochemistry was performed on paraffin-embedded tumor specimens obtained during adrenalectomy using a monoclonal antibody reacting with both wild-type and mutant p53. Prevalence of mutations was adenomas, 0/5, carcinomas, 3/11, and adrenocortical cell lines, 2/2. Single point mutations were detected in 3 cases (exons 5, 6, and 7, respectively), and rearrangements of exon 7/8 and 8 were found in 2 cases. Immunohistochemistry detected strong nuclear and/or cytoplasmic p53 immunoreactivity in all adrenocortical carcinomas with point mutations of the p53 gene but not in adenomas and carcinomas with the wild-type sequence or with deletion/rearrangement of the p53 gene. We conclude that p53 plays a role in the tumorigenesis of adrenocortical carcinomas but is of less importance to benign adenomas
Nonhypnotic low-dose etomidate for rapid correction of hypercortisolaemia in cushing's syndrome
We determined the adrenostatic potential of low-dose nonhypnotic etomidate in six patients with Cushing's syndrome (ectopic Cushing's syndrome,n=2; Cushing's disease,n=3; bilateral adrenal adenoma,n=1). Etomidate was given as a continuous infusion for 32 h in a dose of 2.5 mg/h (n=5) or 0.3 mg/kg/h (n=3), respectively. Saline was given during a control period. The responsiveness to exogenous ACTH was studied during placebo and 7 and 31 h after commencing etomidate by administration of 250 µg 1–24 ACTH i.v. Etomidate (2.5 mg/h) led to a consistent decrease in serum cortisol in all patients from a mean of 39.4±13.3 to 21.1±5.7 µg/dl after 7 h (P<0.05 compared with placebo). After 24 h cortisol was reduced further to a mean steady state concentration of 12.3±5.7 µg/dl (P<0.05). At the end of the infusion period the cortisol increase in response to ACTH was reduced but not abolished. In contrast, a dose of 0.3 mg/kg/h etomidate induced unresponsiveness of serum cortisol to exogenous ACTH within 7 h. However, sedation was observed in two out of three patients at this dose, while during etomidate in a dose of 2.5 mg/h no side effects were seen. We conclude that low-dose non-hypnotic etomidate reduces serum cortisol to within the normal range in patients with Cushing's syndrome. The possibility to dissociate the adrenostatic effect of etomidate from its hypnotic action, the absence of side effects, and the i.v. route suggest that etomidate in a dose of 0.04–0.05 mg/kg/h may become the drug of choice for rapid initial control of hypercortisolism
Assessing outcomes after adrenalectomy for unilateral primary aldosteronism
Item does not contain fulltex
Primary aldosteronism: Metabolic reprogramming and the pathogenesis of aldosterone-producing adenomas
SIMPLE SUMMARY: Primary aldosteronism is a common form of endocrine hypertension often caused by a hyper-secreting tumor of the adrenal cortex called an aldosterone-producing adenoma. Metabolic reprogramming plays a role in tumor progression and influences the tumor immune microenvironment by limiting immune-cell infiltration and suppressing its anti-tumor function. We hypothesized that the development of aldosterone-producing adenomas involves metabolic adaptations of its component tumor cells and intrinsically influences tumor pathogenesis. Herein, we use state-of-the-art computational tools for the comprehensive analysis of array-based gene expression profiles to demonstrate metabolic reprogramming and remodeling of the immune microenvironment in aldosterone-producing adenomas compared with paired adjacent adrenal cortical tissue. Our findings suggest metabolic alterations may function in the pathogenesis of aldosterone-producing adenomas by conferring survival advantages to their component tumor cells. ABSTRACT: Aldosterone-producing adenomas (APAs) are characterized by aldosterone hypersecretion and deregulated adrenocortical cell growth. Increased energy consumption required to maintain cellular tumorigenic properties triggers metabolic alterations that shape the tumor microenvironment to acquire necessary nutrients, yet our knowledge of this adaptation in APAs is limited. Here, we investigated adrenocortical cell-intrinsic metabolism and the tumor immune microenvironment of APAs and their potential roles in mediating aldosterone production and growth of adrenocortical cells. Using multiple advanced bioinformatics methods, we analyzed gene expression datasets to generate distinct metabolic and immune cell profiles of APAs versus paired adjacent cortex. APAs displayed activation of lipid metabolism, especially fatty acid β-oxidation regulated by PPARα, and glycolysis. We identified an immunosuppressive microenvironment in APAs, with reduced infiltration of CD45(+) immune cells compared with adjacent cortex, validated by CD45 immunohistochemistry (3.45-fold, p < 0.001). APAs also displayed an association of lipid metabolism with ferroptosis and upregulation of antioxidant systems. In conclusion, APAs exhibit metabolic reprogramming towards fatty acid β-oxidation and glycolysis. Increased lipid metabolism via PPARα may serve as a key mechanism to modulate lipid peroxidation, a hallmark of regulated cell death by ferroptosis. These findings highlight survival advantages for APA tumor cells with metabolic reprogramming properties
Subtyping of Patients with Primary Aldosteronism: An Update
Primary aldosteronism (PA) comprises two main subtypes: unilateral aldosteronism, mainly caused by aldosterone-producing adenoma;and bilateral adrenal hyperplasia. Establishing the correct subtype in patients with PA is indispensible for choice of treatment. In addition to established methods, alternative tests are evolving for subtyping. Computed tomography (CT) and adrenal venous sampling (AVS) are currently recommended in the guidelines for the diagnostic work-up of patients with PA. CT cannot be used as a stand-alone test for subtyping because of its limited accuracy but may be used in combination with other tests such as AVS or functional imaging. Nevertheless CT remains mandatory to exclude adrenocortical carcinoma. AVS provides the most accurate test to detect excessive secretion of aldosterone from an adrenal mass but has several practical limitations and disadvantages. Therefore, alternative non-invasive and patient-friendly methods are required to determine the need for adrenalectomy. Functional imaging with specific molecular positron emission tomographic ligands is a potential alternative method that may replace AVS for subclassifying patients with PA. The results of preliminary studies of C-11-metomidate are promising but ligands incorporating radionuclides with longer half-lives that selectively bind to CYP11B2 are needed. Steroid profiling provides another method for subtyping and selecting patients for adrenalectomy, but this technology is in its infancy and prospective outcome-based studies are required to determine if this technique may provide an alternative to AVS
Clonal Composition of Human Adrenocortical Neoplasms
The mechanisms of tumorigenesis of adrenocortical neoplasms are still not understood. Tumor formation may be the result of spontaneous transformation of adrenocortical cells by somatic mutations. Another factor stimulating adrenocortical cell growth and potentially associated with formation of adrenal adenomas and, less frequently, carcinomas is the chronic elevation of proopiomelanocortin-derived peptides in diseases like ACTH-dependent Cushing's syndrome and congenital adrenal hyperplasia. To further investigate the pathogenesis of adrenocortical neoplasms, we studied the clonal composition of such tumors using X-chromosome inactivation analysis of the highly polymorphic region Xcen-Xp11.4 with the hybridization probe M27ß, which maps to a variable number of tandem repeats on the X-chromsome. In addition, polymerase chain reaction amplification of a phosphoglycerokinase gene polymorphism was performed. After DNA extraction from tumorous adrenal tissue and normal leukocytes in parallel, the active X-chromosome of each sample was digested with the methylation-sensitive restriction enzyme HpaII. A second digestion with an appropriate restriction enzyme revealed the polymorphism of the region Xcen-Xp11.4 and the phosphoglycerokinase locus. Whereas in normal polyclonal tissue both the paternal and maternal alleles are detected, a monoclonal tumor shows only one of the parental alleles. A total of 21 female patients with adrenal lesions were analyzed; 17 turned out to be heterozygous for at least one of the loci. Our results were as follows: diffuse (n = 4) and nodular (n = 1) adrenal hyperplasia in patients with ACTH-dependent Cushing's syndrome, polyclonal pattern; adrenocortical adenomas (n = 8), monoclonal (n = 7), as well as polyclonal (n = 1); adrenal carcinomas (n = 3), monoclonal pattern. One metastasis of an adrenocortical carcinoma showed a pattern most likely due to tumor-associated loss of methylation. In the special case of a patient with bilateral ACTH-independent macronodular hyperplasia, diffuse hyperplastic areas and a small nodule showed a polyclonal pattern, whereas a large nodule was monoclonal. We conclude that most adrenal adenomas and carcinomas are monoclonal, whereas diffuse and nodular adrenal hyperplasias are polyclonal. The clonal composition of ACTH-independent massive macronodular hyperplasia seems to be heterogeneous, consisting of polyclonal and monoclonal areas
- …