931 research outputs found
Magneto-optics in pure and defective Ga_{1-x}Mn_xAs from first-principles
The magneto-optical properties of GaMnAs including their most
common defects were investigated with precise first--principles
density-functional FLAPW calculations in order to: {\em i}) elucidate the
origin of the features in the Kerr spectra in terms of the underlying
electronic structure; {\em ii}) perform an accurate comparison with
experiments; and {\em iii}) understand the role of the Mn concentration and
occupied sites in shaping the spectra. In the substitutional case, our results
show that most of the features have an interband origin and are only slightly
affected by Drude--like contributions, even at low photon energies. While not
strongly affected by the Mn concentration for the intermediately diluted range
( 10%), the Kerr factor shows a marked minimum (up to 1.5) occurring
at a photon energy of 0.5 eV. For interstitial Mn, the calculated
results bear a striking resemblance to the experimental spectra, pointing to
the comparison between simulated and experimental Kerr angles as a valid tool
to distinguish different defects in the diluted magnetic semiconductors
framework.Comment: 10 pages including 2 figures, submitted to Phys. Rev.
Ultrafast Magneto-Acoustics in Nickel Films
We report about the existence of magneto-acoustic pulses propagating in a
200-nm-thick ferromagnetic nickel film excited with 120 fs laser pulses. They
result from the coupling between the magnetization of the ferromagnetic film
and the longitudinal acoustic waves associated to the propagation of the
lattice deformation induced by the femtosecond laser pulses. The
magneto-acoustic pulses are detected from both the front and back sides of the
film, using the time-resolved magneto-optical Kerr technique, measuring both
the time dependent rotation and ellipticity. We show that the propagating
acoustic pulse couples efficiently to the magnetization and is strong enough to
induce a precession of the magnetization. It is due to a transient change of
the crystalline anisotropy associated to the lattice deformation. It is shown
that the results can be interpreted by combining the concepts of acoustic pulse
propagation and ultrafast magnetization dynamics.Comment: 4 pages, 3 figures, Submitted to Physical Review Letters on November
30th 201
Recommended from our members
Chiral Spin Liquid Ground State in YBaCo3FeO7
A chiral spin liquid state is discovered in the highly frustrated, noncentrosymmetric swedenborgite compound YBaCo3FeO7, a layered kagome system of hexagonal symmetry, by advanced polarized neutron scattering from a single domain crystalline sample. The observed diffuse magnetic neutron scattering has an antisymmetric property that relates to its specific chirality, which consists of three cycloidal waves perpendicular to the c axis, forming an entity of cylindrical symmetry. Chirality and symmetry agree with relevant antisymmetric exchanges arising from broken spatial parity. Applying a Fourier analysis to the chiral interference pattern, with distinction between kagome sites and the connecting trigonal interlayer sites of threefold symmetry, the chiral spin correlation function is determined. Characteristic chiral waves originate from the trigonal sites and extend over several periods in the kagome planes. The chiral spin liquid is remarkably stable at low temperatures despite strong antiferromagnetic spin exchange. The observation raises a challenge, since the commonly accepted ground states in condensed matter either have crystalline long-range order or form a quantum liquid. We show that, within the classical theory of magnetic order, a disordered ground state may arise from chirality. The present scenario, with antisymmetric exchange acting as a frustrating gauge background that stabilizes local spin lumps, is similar to the avoided phase transition in coupled gauge and matter fields for subnuclear particles
Multimode Memories in Atomic Ensembles
The ability to store multiple optical modes in a quantum memory allows for
increased efficiency of quantum communication and computation. Here we compute
the multimode capacity of a variety of quantum memory protocols based on light
storage in ensembles of atoms. We find that adding a controlled inhomogeneous
broadening improves this capacity significantly.Comment: Published version. Many thanks are due to Christoph Simon for his
help and suggestions. (This acknowledgement is missing from the final draft:
apologies!
- β¦