133 research outputs found

    An intervention to stop smoking among patients suspected of TB - evaluation of an integrated approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In many low- and middle-income countries, where tobacco use is common, tuberculosis is also a major problem. Tobacco use increases the risk of developing tuberculosis, secondary mortality, poor treatment compliance and relapses. In countries with TB epidemic, even a modest relative risk leads to a significant attributable risk. Treating tobacco dependence, therefore, is likely to have benefits for controlling tuberculosis in addition to reducing the non-communicable disease burden associated with smoking. In poorly resourced health systems which face a dual burden of disease secondary to tuberculosis and tobacco, an integrated approach to tackle tobacco dependence in TB control could be economically desirable. During TB screening, health professionals come across large numbers of patients with respiratory symptoms, a significant proportion of which are likely to be tobacco users. These clinical encounters, considered to be "teachable moments", provide a window of opportunity to offer treatment for tobacco dependence.</p> <p>Methods/Design</p> <p>We aim to develop and trial a complex intervention to reduce tobacco dependence among TB suspects based on the WHO 'five steps to quit' model. This model relies on assessing personal motivation to quit tobacco use and uses it as the basis for assessing suitability for the different therapeutic options for tobacco dependence.</p> <p>We will use the Medical Research Council framework approach for evaluating complex interventions to: (a) design an evidence-based treatment package (likely to consist of training materials for health professionals and education tools for patients); (b) pilot the package to determine the delivery modalities in TB programme (c) assess the incremental cost-effectiveness of the package compared to usual care using a cluster RCT design; (d) to determine barriers and drivers to the provision of treatment of tobacco dependence within TB programmes; and (e) support long term implementation. The main outcomes to assess the effectiveness would be point abstinence at 4 weeks and continuous abstinence up to 6 months.</p> <p>Discussion</p> <p>This work will be carried out in Pakistan and is expected to have relevance for other low and middle income countries with high tobacco use and TB incidence. This will enhance our knowledge of the cost-effectiveness of treating tobacco dependence in patients suspected of TB.</p> <p>Trial Registration</p> <p>Trial Registration Number: ISRCTN08829879</p

    Effect of transgene introgression site on gene migration from transgenic b. napus to b. rapa [abstract]

    Get PDF
    Abstract only availableThere is a growing concern of the possible transgenic introgression from GM plants into agricultural weeds, which has stimulated research in the process of crop to weed gene flow. Crop to weed gene flow often involves the hybridization of a polyploidy crop to a diploid weed. An example is canola (Brassica napus with AACC genomes) which can hybridize with B. rapa (AA) to produce fertile triploid F1 hybrids (ACC) in the wild. It is hypothesized that there are "safe sites" on the C genome because the C genome is likely to be lost from wild populations after a few generations of repeated backcrossing with B. rapa. However, there is homoeology between the A and C genomes of Brassica, which allows potential recombination between genomes and the movement of transgenes from the C to A genomes by chromosomal rearrangements. Recent advances in molecular markers and fluorescent in situ hybridization (FISH) now allow us to observe the frequency of homoeologous exchanges following hybridization. Our research is focused on finding safe sites within the B. napus genome which are least likely to be transferred into B. napus and B. rapa hybrids and their progeny. To test this, we have crossed a transgenic B. napus with a natural B. rapa three times to make three different F1events. Then we backcrossed each of the three F1 three times with B. rapa. We are measuring the germination rate of each generation and using transgene specific PCR primers to check the presence or absence of the transgene in hybrids. We will also use molecular cytogenetics (FISH) to count chromosome numbers. This study will help determine the possibilities of a "safe" site in B. napus and offer insight in the mechanisms of crop to weed transgene introgression in B. napus x B. rapa hybrids.MU Monsanto Undergraduate Research Fellowshi

    Recent Advances in Seed Enhancements

    Get PDF
    Seed quality is vital to sustainable crop production and food security. Seed enhancements include physical, physiological and biological treatments to overcome germination constraints by uniform stands, earlier crop development and better yields. Improved germination rates and seedling vigour are due to reduced emergence time by earlier start of metabolic activities of hydrolytic enzymes and resource mobilization. Nutrient homeostasis, ion uptake, hormonal regulation, activation of antioxidant defence system, reduced lipid peroxidation and accumulation of compatible solutes are some mechanisms conferring biotic and abiotic stress tolerance. Several transcription factors for aquaporins, imbibitions, osmotic adjustment, antioxidant defence and phenylpropanoid pathway have been identified. However, the knowledge of molecular pathways elucidating mode of action of these effects, reduced longevity of primed or other physical and biological agents for seed treatments and market availability of high-quality seeds are some of the challenges for scientists and seed industry. In this scenario, there is need to minimize the factors associated with reduced vigour during seed production, improve seed storage and handling, develop high-tech seeds by seed industry at appropriate rates and integrate agronomic, physiological and molecular seed research for the effective regulation of high-quality seed delivery over next generations

    Chromosomal evolution in Brassicacae: Allopolyploidy, aneuploidy and transgene transmission [abstract]

    Get PDF
    Abstract only availablePolyploidy is a eukaryotic phenomenon common to plants that serves as an evolutionary mechanism for speciation. Diploid species undergo polyploidization through single genome duplication (autopolyploidy) or by the hybridization of genomes from two or more distinct progenitor species (allopolyploidy). Aneuploidy can arise where offspring possess extra or fewer chromosomes than their progenitors. Over successive generations, changes in chromosomal number and rearrangement can lead to speciation or differentiation of ecotypes within a species. Using advanced molecular cytogenetics and fluorescent in situ hybridization (FISH), we can distinguish chromosomes and genomic markers among different ecotypes and species. In the agricultural industry where genetically modified organisms (GMOs) are used, aneuploidy and homoeologous recombination of transgenic elements presents a potential mechanism of moving transgenes from GMO crops into the genomes of wild diploids. These wild diploids then have the potential to become "superweeds" that can disrupt ecological systems. The goal of this study was to investigate the movement of a transgene from an allopolyploid to a diploid in controlled greenhouse crosses. Transgenic Brassica napus allopolyploid plants (AACC) were backcrossed to natural Brassica rapa (AA) recurrently over three generations. We examined each of the three backcross generations for chromosome number and gene transmission. Molecular cytogenetic analysis was performed on flower buds from each backcross, chromosome numbers were recorded and gene transmission was analyzed by PCR. As expected, we found aneuploidy in Brassica napus x Brassica rapa hybrids suggesting potential for homoeologous recombination of transgenes into non-transgenic diploid species. Surprisingly, despite aneuploidy, we also found a high rate of both germination and transmission of the transgene into wild Brassica rapa, suggesting the need to find safe sites in Brassica napus to insert transgenes

    Prestige and Nuclear Security of Iran: A Pakistani Perspective

    Get PDF
    The nuclear program of Iran has been fraught with controversies and it has faced several economic sanctions over the years. These controversies emerged and grew stronger with Iran refusing to provide the international experts access to controversial sites like Natanz where it is assumed that illegal activities relating to uranium enrichment are taking place. Iran assumes an important position in the region. However, it shares ideological and political differences with its neighboring Sunni majority Arab states. Iran considers United States and Israel as its main adversaries and, historically, there have been several exchanges of threats of war to each other. With these threats it is implied that Iran wants to develop nuclear weapons for; firstly, to have hegemonic position in the region; secondly, to make the threat to US and Israel more credible; and lastly, to have a greater say in the world affairs. Iran&rsquo;s nuclear program has been a source of concern for its regional countries and Pakistan also, being a neighboring country. The relations between them may get complicated; however, the differences between Iran and Pakistan are not huge enough to result in the hot conflict

    A dipole sub-array with reduced mutual coupling for large antenna array applications

    Get PDF
    The use of large array antennas in multiple-input multiple-output (MIMO) exploits diversity and reduces the overall transmission power making it a key enabling technology for 5G. Despite all the benefits, mutual coupling (MC) between elements in these array antennas is a concerning issue as it affects the antenna terminal impedance, reflection coefficients, etc. In this paper, a four-element printed dipole sub-array with reduced MC for S-band has been proposed. A balanced transmission line structure has been designed with two dipole arms on the opposite side of the substrate. Simulated and measured results are in good agreement making the design suitable for large array applications such as phased array radars. The proposed array exhibits good impedance matching with a reflection coefficient of -45 dB and resonating at the center frequency of 2.8 GHz. Moreover, isolation of -20 dB has been achieved for each element in a 2×2 planar array structure using out of band, parasitic elements, and planar shift by distributing the separation between the elements

    Classification of Melanoma and Nevus in Digital Images for Diagnosis of Skin Cancer

    Get PDF
    Melanoma is considered a fatal type of skin cancer. However, it is sometimes hard to distinguish it from nevus due to their identical visual appearance and symptoms. The mortality rate because of this disease is higher than all other skin-related consolidated malignancies. The number of cases is growing among young people, but if it is diagnosed at an earlier stage, then the survival rates become very high. The cost and time required for the doctors to diagnose all patients for melanoma are very high. In this paper, we propose an intelligent system to detect and distinguish melanoma from nevus by using the state-of-the-art image processing techniques. At first, the Gaussian filter is used for removing noise from the skin lesion of the acquired images followed by the use of improved K-mean clustering to segment out the lesion. A distinctive hybrid superfeature vector is formed by the extraction of textural and color features from the lesion. Support vector machine (SVM) is utilized for the classification of skin cancer into melanoma and nevus. Our aim is to test the effectiveness of the proposed segmentation technique, extract the most suitable features, and compare the classification results with the other techniques present in the literature. The proposed methodology is tested on the DERMIS dataset having a total number of 397 skin cancer images: 146 are melanoma and 251 are nevus skin lesions. Our proposed methodology archives encouraging results having 96% accuracy

    A Case Study: Particulate-Filled Polyester Hybrid Laminated Composites

    Get PDF
    The aim of this work was to develop the novel glass fiber–reinforced polyester hybrid composites (PHCs) filled with micro-sized titania (TiO2) particles and investigate their functional, mechanical and thermal behaviors. To equip PHCs of unsaturated polyester resin (UPR) with multifunctional characteristics, TiO2 particles (1–5 wt.%) were dispersed with high disperser homogenizer using hand lay-up process (HLUP), combined with compression molding technique (CMT). The interactions (cross linking and hydrogen bonding) between polymeric chains, styrene, silica contents of glass fiber and TiO2 particles in PHCs were confirmed by Fourier transform infrared spectroscopy (FTIR). The mechanical and thermal properties increased brilliantly by potential utilization of TiO2 particles. The 3 wt.% of TiO2-imbedded PHCs showed remarkable progress in tensile strength (46 MPa) as well as tensile modules (2.9 GPa) relative to unloaded PHCs. The 5 wt.% of TiO2-imbedded PHCs showed 61 and 64% increase in impact energy and hardness, respectively. Thermo-gravimetric analysis (TGA) showed that controlled PHC-0 had the mass loss up to 50%, which was restricted to 17% by using TiO2 particles for PHC-5. Hence, it was inferred that micro-sized TiO2 was encouraging filler for incremental valuation in functional, mechanical and thermal characteristics of PHCs. After finding the marvelous mechanical and thermal properties of PHCs, it is endorsed that these polyester composites can be tested for high strength and high temperature applications
    • …
    corecore