12 research outputs found
Fruit and microbial cues in the behavioural ecology and management of Drosophila suzukii
Investigating the factors that determine the behaviour of new pests is essential for understanding, predicting and managing their impact on natural and agricultural ecosystems. The spotted wing drosophila (SWD), Drosophila suzukii (Matsumura; Diptera: Drosophilidae), is a worldwide spreading polyphagous pest of soft fruit and berries. Drosophila suzukii is capable to oviposit and develop in ripening fruit, which represents an ecological host shift relative to Drosophila species that prefer overripe fruit. Notably, D. suzukii lives in close association with yeasts, like saprophagous Drosophila flies, but the ecological relevance of this association is insufficiently understood. Chemical cues are important when D. suzukii exploits fruit as a niche. Chemosensory adaptations allow D. suzukii to detect chemical cues emitted by ripening and overripe host fruits. Host attraction, consequently, is odour-guided and precedes egg-laying and exploitation of fruit as the larval niche. However, it is not clear to which extent fruit ripeness, presence of yeast, or sex and mating state of the flies, modulate attraction and host choice. This thesis demonstrates: (i) D. suzukii host choice is modulated by fruit ripeness and fly mating, (ii) a reciprocal niche construction and mutualistic interaction between D. suzukii and the yeast Hanseniaspora uvarum (Niehaus; Ascomycota: Saccharomyceta) on fresh fruit, (iii) the D. suzukii-H. uvarum association can be exploited for the development of lures to monitor and control the invasive pest. The collective findings advance our fundamental understanding of D. suzukii host choice decisions and niche construction. This understanding is of relevance for the development of new pest management tools such as manipulation of insect behaviour
Influence of molecular structure on the antimicrobial function of phenylenevinylene conjugated oligoelectrolytes.
Conjugated oligoelectrolytes (COEs) with phenylenevinylene (PV) repeat units are known to spontaneously intercalate into cell membranes. Twelve COEs, including seven structures reported here for the first time, were investigated for the relationship between their membrane disrupting properties and structural modifications, including the length of the PV backbone and the presence of either a tetraalkylammonium or a pyridinium ionic pendant group. Optical characteristics and interactions with cell membranes were determined using UV-Vis absorption and photoluminescence spectroscopies, and confocal microscopy. Toxicity tests on representative Gram-positive (Enterococcus faecalis) and Gram-negative (Escherichia coli) bacteria reveal generally greater toxicity to E. faecalis than to E. coli and indicate that shorter molecules have superior antimicrobial activity. Increased antimicrobial potency was observed in three-ring COEs appended with pyridinium ionic groups but not with COEs with four or five PV repeat units. Studies with mutants having cell envelope modifications indicate a possible charge based interaction with pyridinium-appended compounds. Fluorine substitutions on COE backbones result in structures that are less toxic to E. coli, while the addition of benzothiadiazole to COE backbones has no effect on increasing antimicrobial function. A weakly membrane-intercalating COE with only two PV repeat units allowed us to determine the synthetic limitations as a result of competition between solubility in aqueous media and association with cell membranes. We describe, for the first time, the most membrane disrupting structure achievable within two homologous series of COEs and that around a critical three-ring backbone length, structural modifications have the most effect on antimicrobial activity
Hanseniaspora uvarum Attracts Drosophila suzukii (Diptera: Drosophilidae) With High Specificity
Since the early phase of the intercontinental dispersal of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), fermentation baits have been used for monitoring. Self-made lures and commercial products are often based on wine and vinegar. From an ecological perspective, the formulation of these baits is expected to target especially vinegar flies associated with overripe fruit, such as Drosophila melanogaster (Meigen) (Diptera: Drosophilidae). Hanseniaspora uvarum (Niehaus) (Ascomycota: Saccharomyceta) is a yeast closely associated with D. suzukii and fruit, and furthermore attractive to the flies. Based on this relation, H. uvarum might represent a suitable substrate for the development of lures that are more specific than vinegar and wine. In the field, we therefore, compared H. uvarum to a commercial bait that was based on vinegar and wine with respect to the number of trapped D. suzukii relative to other drosophilids and arthropods. Trap captures were higher with the commercial bait but specificity for D. suzukii was greater with H. uvarum. Moreover, H. uvarum headspace extracts, as well as a synthetic blend of H. uvarum volatiles, were assayed for attraction of D suzukii in a wind tunnel and in the field. Headspace extracts and the synthetic blend induced strong upwind flight in the wind tunnel and confirmed attraction to H. uvarum volatiles. Furthermore, baited with H. uvarum headspace extract and a drowning solution of aqueous acetic acid and ethanol, 74% of field captured arthropods were D. suzukii. Our findings suggest that synthetic yeast headspace formulations might advance the development of more selective monitoring traps with reduced by-catch
Wild African Drosophila melanogaster are seasonal specialists on marula fruits
Although the vinegar fly Drosophila melanogaster isarguably the most studied organism on the planet,fundamental aspects of this species’ natural ecologyhave remained enigmatic [1]. We have here investigateda wild population of D. melanogaster from amopane forest in Zimbabwe. We find that these fliesare closely associated with marula fruit (Sclerocaryabirrea) and propose that this seasonally abundantand predominantly Southern African fruit is a keyancestral host of D. melanogaster. Moreover, whenfruiting, marula is nearly exclusively used byD. melanogaster, suggesting that these forest-dwellingD. melanogaster are seasonal specialists, in asimilar manner to, e.g., Drosophila erecta on screwpine cones [2]. We further demonstrate that themain chemicals released by marula activate odorantreceptors that mediate species-specific host choice(Or22a) [3, 4] and oviposition site selection (Or19a)[5]. The Or22a-expressing neurons—ab3A—respondstrongly to the marula ester ethyl isovalerate, a volatilerarely encountered in high amounts in other fruit.We also show that Or22a differs among African populationssampled from a wide range of habitats, inline with a function associated with host fruit usage.Flies from Southern Africa, most of which carry adistinct allele at the Or22a/Or22b locus, have ab3Aneurons that are more sensitive to ethyl isovaleratethan, e.g., European flies. Finally, we discuss thepossibility that marula, which is also a culturallyand nutritionally important resource to humans,may have helped the transition to commensalism inD. melanogaster
Behavioral manipulation of Drosophila suzukii for pest control: high attraction to yeast enhances insecticide efficacy when applied on leaves
BACKGROUND The invasive pest, Drosophila suzukii attacks fresh soft-skinned fruit. Broad-spectrum insecticides are implemented for control but there is a need to reduce environmental risks and insecticide residues on fruits. Hanseniaspora uvarum is a yeast frequently found on ripe fruits and associated with D. suzukii. We aim to exploit the ecological association and attraction of D. suzukii to H. uvarum by developing an attract-and-kill strategy, with spray-application on canopy but not fruit. We therefore investigated D. suzukii attraction, egg-laying and mortality when exposed to insecticidal yeast-based formulations. RESULTS Hanseniaspora uvarum strongly attracted D. suzukii when applied on leaves of grapevine, Vitis vinifera. Notably, this attractiveness was competitive to ripe grape berries that were susceptible to D. suzukii infestation. Moreover, adding H. uvarum enhanced the efficacy of insecticidal formulations against D. suzukii. Flies exposed to leaves treated with yeast-insecticide formulations showed higher mortality and laid a lower number of eggs compared to flies exposed to insecticide alone. In a wind tunnel, all treatments containing H. uvarum alone or in combination with insecticides, caused similar upwind flight and landing at the odor source, which provides evidence that the addition of insecticide did not reduce D. suzukii attraction to yeast. CONCLUSION Hanseniaspora uvarum can be used to manipulate the behavior of D. suzukii by attracting flies to insecticide formulations. Yeast attraction is competitive to grape berries and improves insecticide effectiveness, suggesting that sprays covering canopy only, could reduce residues on fruit without compromising management efficacy
Field and greenhouse application of an attract-and-kill formulation based on the yeast Hanseniaspora uvarum and the insecticide spinosad to control Drosophila suzukii in grapes
BACKGROUND The invasive insect Drosophila suzukii (Matsumura) is an important pest of several red grape varieties. The yeast Hanseniaspora uvarum (Niehaus), which is associated with D. suzukii, strongly attracts flies and stimulates them to feed on yeast-laden food. In the present study, a formulation based on H. uvarum culture with spinosad insecticide was applied to the foliage of vineyards and control of D. suzukii was compared to applying spinosad to the whole plant. After successful H. uvarum and insecticide application in the vineyard, we tested additional H. uvarum-based formulations with spinosad in a greenhouse to determine their capacity to control D. suzukii. RESULTS Application of the H. uvarum-spinosad formulation at 36.4 g of spinosad per hectare reduced the D. suzukii field infestation at the same rate as applying 120 g of spinosad per hectare and prevented spinosad residues on grapes. Leaves treated with H. uvarum and spinosad in the field and transferred to a laboratory assay caused high mortality to flies and reduced the number of eggs laid on fruits. Formulations with spinosad applied in the greenhouse showed that both H. uvarum culture and the yeast cell-free supernatant of a centrifuged culture increased fly mortality and reduced the number of eggs laid compared to the unsprayed control. CONCLUSION In comparison to typical spinosad spray applications, the use of H. uvarum in combination with spinosad as an attract-and-kill formulation against D. suzukii reduces pesticide residues on the fruits by targeting the treatment to the canopy and decreasing the amount of insecticide per hectare without compromising control efficacy
When is it biological control? A framework of definitions, mechanisms, and classifications
Biological control, or biocontrol, is the exploitation of living agents (incl. viruses) to combat pestilential organisms (incl. pathogens, pests, and weeds) for diverse purposes to provide human benefits. Thus, during the last century the practices and concepts involved have evolved in separate streams associated with distinct scientific and taxonomic disciplines. In parallel developments, there have been increasing references to biological control in industrial contexts and legislation, resulting in conceptual and terminological disintegration. The aim of this paper is to provide a global conceptual and terminological platform that facilitates future development of the field. We review use of previously suggested terms in key fields (e.g., phytopathology, entomology, and weed science), eliminate redundant terminology, identify three principles that should underpin the concept, and then present a new framework for biological control, rooted in seminal publications. The three principles establish that (1) only living agents can mediate biological control, (2) biological control always targets a pest, directly or indirectly, and (3) all biocontrol methods can be classified in four main categories depending on whether resident agents are utilized, with or without targeted human intervention (conservation biological control and natural biological control, respectively) or agents are added for permanent or temporary establishment (classical biological control and augmentative biological control, respectively). Correct identification of what is, and is not, biological control can help efforts to understand and optimize biological pest control for human and environmental benefits. The new conceptual framework may contribute to more uniform and appropriate regulatory approaches to biological control, and more efficient authorization and application of biocontrol products
Detection of the spotted wing drosophila, Drosophila suzukii, in continental sub-Saharan Africa
The spotted wing drosophila, Drosophila suzukii Matsumura, is an insect pest of soft-skinned fruit, native to Eastern Asia. Since 2008, a world-wide dispersal of D. suzukii is seen, characterized by the establishment of the pest in many Asian, American and European countries. While the potential for invasion of continental Africa by D. suzukii has been predicted, its presence has only been shown for Morocco in Northern Africa. Knowledge about a possible establishment in other parts of the continent is needed as a basis for pest management. In 2019, we carried out a first survey in three counties in Kenya to monitor for the presence of D. suzukii using traps baited with a blend of apple cider vinegar and red wine. A total of 389 D. suzukii flies were captured in a fruit farm at Nakuru county, with more female flies being trapped than males. We confirmed the morphological identification of D. suzukii using DNA barcoding. In 2020, we performed a follow-up survey at 14 locations in six counties to delimit the distribution of D. suzukii in the main berry growing zones in Kenya. The survey indicated that so far D. suzukii is restricted to Nakuru county where it was initially detected. This is the first study to provide empirical evidence of D. suzukii in continental sub-Saharan Africa, confirming that the pest is expanding its geographic range intercontinentally. Given the high dispersal potential of D. suzukii, a concerted effort to develop management strategies is a necessity for containment of the pest
An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles
Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences