230 research outputs found

    Performance of flooded rice grown in succession to winter cover crops

    Get PDF
    Mean grain yield of flooded rice in southern Brazil has increased in recent years due to the use of high-yield cultivars and improvement of crop management practices. Nevertheless, stagnation in grain yields has been observed in some riceproducing regions. Adoption of conservation tillage systems based on cover crops may be a strategy to increase rice grain yield potential. The objective of the present study was to evaluate the effect of winter cover crops on initial establishment, development, and grain yield of flooded rice (Oryza sativa L.) grown under different fertilization levels and no-tillage. A field experiment was carried out for three consecutive years (2010/11, 2011/12, and 2012/13) in Cachoeirinha, Rio Grande do Sul, South Brazil. Treatments included three winter cover crops [ryegrass (Lolium multiflorum Lam.), native serradella (Ornithopus micranthus Benth.), and a ryegrass-serradella mixture] and fallow, and three fertilization levels for rice grown in succession. More than 3 Mg ha-1 of serradella aboveground residue or 4 Mg ha-1 of ryegrass residue limited rice emergence in the first year when rainfall in the sowing-emergence period was higher than in the second and third years In contrast, a large amount of residue (serradella >2 Mg ha-1; ryegrass >3 Mg ha-1) was beneficial to rice emergence when rainfall was low in the sowing-emergence period of the second and third years. The serradella cover crop increased rice aboveground biomass at anthesis by 22 % compared to the ryegrass cover crop. Furthermore, rice grain yield was 15 % higher in succession to serradella than to ryegrass in the third year. Continuous cultivation of flooded rice in succession to ryegrass over three years reduced grain yield by around 1.4 Mg ha-1, regardless of fertilization level. Fertilization for very high production expectations increased rice grain yield in all years, especially in the second year, when solar radiation was higher than normal. The use of winter cover crops affected plant emergence, aboveground biomass, and grain yield of flooded rice. Rice grain yield increased with increases in fertilization level, and this response was not affected by the previous cover crop

    Critical limits of NDVI for yield potential estimation in maize

    Get PDF
    A estimativa do potencial produtivo da cultura do milho ao longo do ciclo de desenvolvimento é uma das novas práticas agrícolas que vêm sendo utilizadas para qualificar o manejo da cultura. Neste sentido, destaca-se a inserção de sensores de vegetação, com a finalidade de realizar o monitoramento do desenvolvimento e da condição nutricional da cultura ao longo do seu ciclo. O objetivo do presente trabalho foi determinar os limites críticos do Índice de vegetação por diferença normalizada (NDVI) para a determinação de classes de potencial produtivo do milho em diferentes estádios fenológicos, utilizando sensor óptico ativo de vegetação (Greenseeker). O experimento foi conduzido na EEA/UFRGS, durante a safra agrícola 2013/2014. Os tratamentos consistiram de diferentes épocas de dessecação da aveia branca (Avena sativa L.) antes da semeadura da cultura do milho. As avaliações com o sensor óptico ativo foram realizadas nos estádios fenológicos V3, V5, V6, V7 e V8. Os resultados mostraram que o NDVI medido pelo sensor Greenseeker foi eficiente na predição da produtividade de milho em diferentes estádios fenológicos. Os limites críticos de NDVI, os quais correspondem a diferentes classes de potencial produtivo, podem ser identificados de maneira rápida e precisa entre os estádios fenológicos V3 a V8 e esta informação pode ser empregada para a adubação nitrogenada em taxa variável de acordo com o potencial produtivo estimado.The estimation of grain yield potential of maize along the growth cycle is one of new agricultural practices that have been used to qualify crop management. In this sense, the use of vegetation sensors can be highlighted, in order to carry out the monitoring of plant development and nutritional condition throughout its development. The objective of this study was to indicate NDVI critical limits for determining grain yield potential classes of maize in different growth stages using an active optical vegetation sensor (Greenseeker). The experiment was carried out in the 2013/14 growing season, in Eldorado do Sul, State of Rio Grande do Sul, southern Brazil. Treatments consisted of different dissecation timing of oat (Avena sativa L.) before corn sowing. Evaluations with the active optical sensor were done at growth stages V3, V5, V6, V7, and V8. Results showed that NDVI measured by the sensor Greenseeker was efficient in identifying maize grain productivity at different growth stages. NDVI critical limits that correspond to different yield potential levels in maize can be quickly and precisely identified between V3 and V8 growth stages and this information can be used for site-specific nitrogen fertilization according to the estimated yield potential

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of ttt\overline{t}, W+bbW+b\overline{b} and W+ccW+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays WνW\rightarrow\ell\nu, where \ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Measurement of the J/ψ pair production cross-section in pp collisions at s=13 \sqrt{s}=13 TeV

    Get PDF
    The production cross-section of J/ψ pairs is measured using a data sample of pp collisions collected by the LHCb experiment at a centre-of-mass energy of s=13 \sqrt{s}=13 TeV, corresponding to an integrated luminosity of 279 ±11 pb1^{−1}. The measurement is performed for J/ψ mesons with a transverse momentum of less than 10 GeV/c in the rapidity range 2.0 < y < 4.5. The production cross-section is measured to be 15.2 ± 1.0 ± 0.9 nb. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψ pair are measured and compared to theoretical predictions.The production cross-section of J/ψJ/\psi pairs is measured using a data sample of pppp collisions collected by the LHCb experiment at a centre-of-mass energy of s=13TeV\sqrt{s} = 13 \,{\mathrm{TeV}}, corresponding to an integrated luminosity of 279±11pb1279 \pm 11 \,{\mathrm{pb^{-1}}}. The measurement is performed for J/ψJ/\psi mesons with a transverse momentum of less than 10GeV/c10 \,{\mathrm{GeV}}/c in the rapidity range 2.0<y<4.52.0<y<4.5. The production cross-section is measured to be 15.2±1.0±0.9nb15.2 \pm 1.0 \pm 0.9 \,{\mathrm{nb}}. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψJ/\psi pair are measured and compared to theoretical predictions

    Measurements of prompt charm production cross-sections in pp collisions at s=5 \sqrt{s}=5 TeV

    Get PDF
    Production cross-sections of prompt charm mesons are measured using data from pppp collisions at the LHC at a centre-of-mass energy of 55\,TeV. The data sample corresponds to an integrated luminosity of 8.60±0.338.60\pm0.33\,pb1^{-1} collected by the LHCb experiment. The production cross-sections of D0D^0, D+D^+, Ds+D_s^+, and D+D^{*+} mesons are measured in bins of charm meson transverse momentum, pTp_{\text{T}}, and rapidity, yy. They cover the rapidity range 2.0<y<4.52.0 < y < 4.5 and transverse momentum ranges 0<pT<10GeV/c0 < p_{\text{T}} < 10\, \text{GeV}/c for D0D^0 and D+D^+ and 1<pT<10GeV/c1 < p_{\text{T}} < 10\, \text{GeV}/c for Ds+D_s^+ and D+D^{*+} mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1<pT<8GeV/c1 < p_{\text{T}} < 8\, \text{GeV}/c are determined to be \begin{equation*} \sigma(pp\rightarrow D^0 X) = 1190 \pm 3 \pm 64\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D^+ X) = 456 \pm 3 \pm 34\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D_s^+ X) = 195 \pm 4 \pm 19\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D^{*+} X)= 467 \pm 6 \pm 40\,\mu\text{b} \end{equation*} where the uncertainties are statistical and systematic, respectively.Production cross-sections of prompt charm mesons are measured using data from pp collisions at the LHC at a centre-of-mass energy of 5 TeV. The data sample corresponds to an integrated luminosity of 8.60 ± 0.33 pb1^{−1} collected by the LHCb experiment. The production cross-sections of D0^{0}, D+^{+}, Ds+_{s}^{+} , and D+^{∗+} mesons are measured in bins of charm meson transverse momentum, pT_{T}, and rapidity, y. They cover the rapidity range 2.0 < y < 4.5 and transverse momentum ranges 0 < pT_{T} < 10 GeV/c for D0^{0} and D+^{+} and 1 < pT_{T} < 10 GeV/c for Ds+_{s}^{+} and D+^{∗+} mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1 < pT_{T} < 8 GeV/c are determined to be σ(ppD0X)=1004±3±54μb,σ(ppD+X)=402±2±30μb,σ(ppDs+X)=170±4±16μb,σ(ppD+X)=421±5±36μb, \begin{array}{l}\sigma \left( pp\to {D}^0X\right)=1004\pm 3\pm 54\mu \mathrm{b},\\ {}\sigma \left( pp\to {D}^{+}X\right)=402\pm 2\pm 30\mu \mathrm{b},\\ {}\sigma \left( pp\to {D}_s^{+}X\right)=170\pm 4\pm 16\mu \mathrm{b},\\ {}\sigma \left( pp\to {D}^{\ast +}X\right)=421\pm 5\pm 36\mu \mathrm{b},\end{array} where the uncertainties are statistical and systematic, respectively.Production cross-sections of prompt charm mesons are measured using data from pppp collisions at the LHC at a centre-of-mass energy of 55\,TeV. The data sample corresponds to an integrated luminosity of 8.60±0.338.60\pm0.33\,pb1^{-1} collected by the LHCb experiment. The production cross-sections of D0D^0, D+D^+, Ds+D_s^+, and D+D^{*+} mesons are measured in bins of charm meson transverse momentum, pTp_{\text{T}}, and rapidity, yy. They cover the rapidity range 2.0<y<4.52.0<y<4.5 and transverse momentum ranges 0<pT<10GeV/c0 < p_{\text{T}} < 10\, \text{GeV}/c for D0D^0 and D+D^+ and 1<pT<10GeV/c1 < p_{\text{T}} < 10\, \text{GeV}/c for Ds+D_s^+ and D+D^{*+} mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1<pT<8GeV/c1 < p_{\text{T}} < 8\, \text{GeV}/c are determined to be \sigma(pp\rightarrow D^0 X) = 1004 \pm 3 \pm 54\,\mu\text{b} \sigma(pp\rightarrow D^+ X) = 402 \pm 2 \pm 30\,\mu\text{b} \sigma(pp\rightarrow D_s^+ X) = 170 \pm 4 \pm 16\,\mu\text{b} \sigma(pp\rightarrow D^{*+} X)= 421 \pm 5 \pm 36\,\mu\text{b} where the uncertainties are statistical and systematic, respectively
    corecore