26 research outputs found

    DETReg: Unsupervised Pretraining with Region Priors for Object Detection

    Full text link
    Recent self-supervised pretraining methods for object detection largely focus on pretraining the backbone of the object detector, neglecting key parts of detection architecture. Instead, we introduce DETReg, a new self-supervised method that pretrains the entire object detection network, including the object localization and embedding components. During pretraining, DETReg predicts object localizations to match the localizations from an unsupervised region proposal generator and simultaneously aligns the corresponding feature embeddings with embeddings from a self-supervised image encoder. We implement DETReg using the DETR family of detectors and show that it improves over competitive baselines when finetuned on COCO, PASCAL VOC, and Airbus Ship benchmarks. In low-data regimes, including semi-supervised and few-shot learning settings, DETReg establishes many state-of-the-art results, e.g., on COCO we see a +6.0 AP improvement for 10-shot detection and over 2 AP improvements when training with only 1\% of the labels. For code and pretrained models, visit the project page at https://amirbar.net/detregComment: CVPR 2022 Camera Read

    Scale-MAE: A Scale-Aware Masked Autoencoder for Multiscale Geospatial Representation Learning

    Full text link
    Large, pretrained models are commonly finetuned with imagery that is heavily augmented to mimic different conditions and scales, with the resulting models used for various tasks with imagery from a range of spatial scales. Such models overlook scale-specific information in the data for scale-dependent domains, such as remote sensing. In this paper, we present Scale-MAE, a pretraining method that explicitly learns relationships between data at different, known scales throughout the pretraining process. Scale-MAE pretrains a network by masking an input image at a known input scale, where the area of the Earth covered by the image determines the scale of the ViT positional encoding, not the image resolution. Scale-MAE encodes the masked image with a standard ViT backbone, and then decodes the masked image through a bandpass filter to reconstruct low/high frequency images at lower/higher scales. We find that tasking the network with reconstructing both low/high frequency images leads to robust multiscale representations for remote sensing imagery. Scale-MAE achieves an average of a 2.4−5.6%2.4 - 5.6\% non-parametric kNN classification improvement across eight remote sensing datasets compared to current state-of-the-art and obtains a 0.90.9 mIoU to 1.71.7 mIoU improvement on the SpaceNet building segmentation transfer task for a range of evaluation scales

    Invariant Information Bottleneck for Domain Generalization

    Full text link
    Invariant risk minimization (IRM) has recently emerged as a promising alternative for domain generalization. Nevertheless, the loss function is difficult to optimize for nonlinear classifiers and the original optimization objective could fail when pseudo-invariant features and geometric skews exist. Inspired by IRM, in this paper we propose a novel formulation for domain generalization, dubbed invariant information bottleneck (IIB). IIB aims at minimizing invariant risks for nonlinear classifiers and simultaneously mitigating the impact of pseudo-invariant features and geometric skews. Specifically, we first present a novel formulation for invariant causal prediction via mutual information. Then we adopt the variational formulation of the mutual information to develop a tractable loss function for nonlinear classifiers. To overcome the failure modes of IRM, we propose to minimize the mutual information between the inputs and the corresponding representations. IIB significantly outperforms IRM on synthetic datasets, where the pseudo-invariant features and geometric skews occur, showing the effectiveness of proposed formulation in overcoming failure modes of IRM. Furthermore, experiments on DomainBed show that IIB outperforms 1313 baselines by 0.9%0.9\% on average across 77 real datasets.Comment: AAAI 202

    Semi-supervised novelty detection with adaptive eigenbases, and application to radio transients

    No full text
    Abstract. We present a semi-supervised online method for novelty detection and evaluate its performance for radio astronomy time series data. Our approach uses adaptive eigenbases to combine 1) prior knowledge about uninteresting signals with 2) online estimation of the current data properties to enable highly sensitive and precise detection of novel signals. We apply the method to the problem of detecting fast transient radio anomalies and compare it to current alternative algorithms. Tests based on observations from the Parkes Multibeam Survey show both effective detection of interesting rare events and robustness to known false alarm anomalies. 1
    corecore