78 research outputs found

    Commentary: The carboxyl-terminal Crk SH3 domain: Regulatory strategies and new perspectives

    Get PDF
    AbstractSince their discovery as cellular counterparts of viral oncogenes more than two decades ago, enormous progress has been made in unraveling the complex regulatory pathways of signal transduction initiated by the Crk family of proteins. New structural and biochemical studies have uncovered novel insights into both negative and positive regulation of Crk mediated by its atypical carboxyl-terminal SH3 domain (SH3C). Moreover, SH3C is tyrosine phosphorylated by receptor tyrosine kinases and non-receptor tyrosine kinases, thereby permitting assemblages of other SH2/PTB domain containing proteins. Such non-canonical signaling by the Crk SH3C reveals new regulatory strategies for adaptor proteins

    ATG proteins mediate efferocytosis and suppress inflammation in mammary involution.

    Get PDF
    Involution is the process of post-lactational mammary gland regression to quiescence and it involves secretory epithelial cell death, stroma remodeling and gland repopulation by adipocytes. Though reportedly accompanying apoptosis, the role of autophagy in involution has not yet been determined. We now report that autophagy-related (ATG) proteins mediate dead cell clearance and suppress inflammation during mammary involution. In vivo, Becn1(+/-) and Atg7-deficient mammary epithelial cells (MECs) produced 'competent' apoptotic bodies, but were defective phagocytes in association with reduced expression of the MERTK and ITGB5 receptors, thus pointing to defective apoptotic body engulfment. Atg-deficient tissues exhibited higher levels of involution-associated inflammation, which could be indicative of a tumor-modulating microenvironment, and developed ductal ectasia, a manifestation of deregulated post-involution gland remodeling. In vitro, ATG (BECN1 or ATG7) knockdown compromised MEC-mediated apoptotic body clearance in association with decreased RAC1 activation, thus confirming that, in addition to the defective phagocytic processing reported by other studies, ATG protein defects also impair dead cell engulfment. Using two different mouse models with mammary gland-associated Atg deficiencies, our studies shed light on the essential role of ATG proteins in MEC-mediated efferocytosis during mammary involution and provide novel insights into this important developmental process. This work also raises the possibility that a regulatory feedback loop exists, by which the efficacy of phagocytic cargo processing in turn regulates the rate of engulfment and ultimately determines the kinetics of phagocytosis and dead cell clearance

    ROCK and mDia1 antagonize in Rho-dependent Rac activation in Swiss 3T3 fibroblasts

    Get PDF
    The small GTPase Rho acts on two effectors, ROCK and mDia1, and induces stress fibers and focal adhesions. However, how ROCK and mDia1 individually regulate signals and dynamics of these structures remains unknown. We stimulated serum-starved Swiss 3T3 fibroblasts with LPA and compared the effects of C3 exoenzyme, a Rho inhibitor, with those of Y-27632, a ROCK inhibitor. Y-27632 treatment suppressed LPA-induced formation of stress fibers and focal adhesions as did C3 exoenzyme but induced membrane ruffles and focal complexes, which were absent in the C3 exoenzyme-treated cells. This phenotype was suppressed by expression of N17Rac. Consistently, the amount of GTP-Rac increased significantly by Y-27632 in LPA-stimulated cells. Biochemically, Y-27632 suppressed tyrosine phosphorylation of paxillin and focal adhesion kinase and not that of Cas. Inhibition of Cas phosphorylation with PP1 or expression of a dominant negative Cas mutant inhibited Y-27632–induced membrane ruffle formation. Moreover, Crk-II mutants lacking in binding to either phosphorylated Cas or DOCK180 suppressed the Y-27632–induced membrane ruffle formation. Finally, expression of a dominant negative mDia1 mutant also inhibited the membrane ruffle formation by Y-27632. Thus, these results have revealed the Rho-dependent Rac activation signaling that is mediated by mDia1 through Cas phosphorylation and antagonized by the action of ROCK

    Control of Alzheimer's Amyloid Beta Toxicity by the High Molecular Weight Immunophilin FKBP52 and Copper Homeostasis in Drosophila

    Get PDF
    FK506 binding proteins (FKBPs), also called immunophilins, are prolyl-isomerases (PPIases) that participate in a wide variety of cellular functions including hormone signaling and protein folding. Recent studies indicate that proteins that contain PPIase activity can also alter the processing of Alzheimer's Amyloid Precursor Protein (APP). Originally identified in hematopoietic cells, FKBP52 is much more abundantly expressed in neurons, including the hippocampus, frontal cortex, and basal ganglia. Given the fact that the high molecular weight immunophilin FKBP52 is highly expressed in CNS regions susceptible to Alzheimer's, we investigated its role in Aβ toxicity. Towards this goal, we generated Aβ transgenic Drosophila that harbor gain of function or loss of function mutations of FKBP52. FKBP52 overexpression reduced the toxicity of Aβ and increased lifespan in Aβ flies, whereas loss of function of FKBP52 exacerbated these Aβ phenotypes. Interestingly, the Aβ pathology was enhanced by mutations in the copper transporters Atox1, which interacts with FKBP52, and Ctr1A and was suppressed in FKBP52 mutant flies raised on a copper chelator diet. Using mammalian cultures, we show that FKBP52 (−/−) cells have increased intracellular copper and higher levels of Aβ. This effect is reversed by reconstitution of FKBP52. Finally, we also found that FKBP52 formed stable complexes with APP through its FK506 interacting domain. Taken together, these studies identify a novel role for FKBP52 in modulating toxicity of Aβ peptides

    Crk and CrkL adaptor proteins: networks for physiological and pathological signaling

    Get PDF
    The Crk adaptor proteins (Crk and CrkL) constitute an integral part of a network of essential signal transduction pathways in humans and other organisms that act as major convergence points in tyrosine kinase signaling. Crk proteins integrate signals from a wide variety of sources, including growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. Mounting evidence indicates that dysregulation of Crk proteins is associated with human diseases, including cancer and susceptibility to pathogen infections. Recent structural work has identified new and unusual insights into the regulation of Crk proteins, providing a rationale for how Crk can sense diverse signals and produce a myriad of biological responses

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Emerging Roles for Crk in Human Cancer

    No full text
    Adaptor proteins are named for their function in assembling complexes of cellular proteins to execute and facilitate transmission of signals. The Crk family of adaptors consists of 2 members, Crk and CrkL. Crk, which was originally isolated as an oncogene, v-Crk, that transforms CEFs, has at least 2 splice variants, CrkI and CrkII, with differing biological activities. All Crk family proteins serve to act as molecular bridges between tyrosine kinases and their substrates and also modulate the specificity and stoichiometry of signaling processes. Signaling via CrkII and CrkL can be negatively regulated via tyrosine phosphorylation–mediated autoinhibition, while such a mechanism is not known to exist for CrkI. Although v-Crk clearly functions as a bona fide oncogene, in recent years, an emerging body of evidence suggests that cellular Crk proteins are overexpressed in human tumors and the expression levels correlate with aggressive and malignant behavior of cancer cells. These properties of Crk proteins make them potential cancer prognosis markers and therapeutic targets
    corecore