22,309 research outputs found
Radial deformation of the earth by oceanic tidal loading
A high-degree spherical harmonic series is used to compute the radial deformation of the Earth by oceanic tidal loading. By exploiting fast numerical transforms, this approach is found to be much more efficient, but no less accurate, than the traditional Green's function approach. The method is used to derive an atlas of load tide maps for 10 constitutents of the NSWC ocean tide model
Low-Mass Dileptons at the CERN-SpS: Evidence for Chiral Restoration?
Using a rather complete description of the in-medium spectral function
- being constrained by various independent experimental information - we
calculate pertinent dilepton production rates from hot and dense hadronic
matter. The strong broadening of the resonance entails a reminiscence to
perturbative annihilation rates in the vicinity of the phase
boundary. The application to dilepton observables in Pb(158AGeV)+Au collisions
- incorporating recent information on the hadro-chemical composition at
CERN-SpS energies - essentially supports the broadening scenario. Possible
implications for the nature of chiral symmetry restoration are outlined.Comment: 6 pages ReVTeX including 5 eps-figure
Improved definition of crustal magnetic anomalies for MAGSAT data
The routine correction of MAGSAT vector magnetometer data for external field effects such as the ring current and the daily variation by filtering long wavelength harmonics from the data is described. Separation of fields due to low altitude sources from those caused by high altitude sources is affected by means of dual harmonic expansions in the solution of Dirichlet's problem. This regression/harmonic filter procedure is applied on an orbit by orbit basis, and initial tests on MAGSAT data from orbit 1176 show reduction in external field residuals by 24.33 nT RMS in the horizontal component, and 10.95 nT RMS in the radial component
Advanced passive communication satellite systems comparison studies. Volume 1 - Summary Final report
Passive communication satellites feasibility for Comsat system - Vol.
Can only flavor-nonsinglet H dibaryons be stable against strong decays?
Using the QCD sum rule approach, we show that the flavor-nonsinglet
dibaryon states with J, J, I=1 (27plet) are nearly
degenerate with the J, I=0 singlet dibaryon, which has been
predicted to be stable against strong decay, but has not been observed. Our
calculation, which does not require an instanton correction, suggests that the
is slightly heavier than these flavor-nonsinglet s over a wide range
of the parameter space. If the singlet mass lies above the threshold (2231~MeV), then the strong interaction breakup to would produce a very broad resonance in the
invariant mass spectrum which would be very difficult to observe. On the other
hand, if these flavor-nonsinglet J=0 and 1 dibaryons are also above the
threshold, but below the breakup threshold (2254
MeV), then because the direct, strong interaction decay to the channel is forbidden, these flavor-nonsinglet states might be more
amenable to experimental observation. The present results allow a possible
reconciliation between the reported observation of
hypernuclei, which argue against a stable , and the possible existence of
dibaryons in general.Comment: 10 pages, 2 figure
Advanced passive communication satellite systems comparison studies. Volume 2 - Technical discussion Final report
Passive communication satellites feasibility for Comsat system - Vol.
Electron-spectroscopic investigation of metal-insulator transition in Sr2Ru1-xTixO4 (x=0.0-0.6)
We investigate the nature and origin of the metal-insulator transition in
Sr2Ru1-xTixO4 as a function of increasing Ti content (x). Employing detailed
core, valence, and conduction band studies with x-ray and ultraviolet
photoelectron spectroscopies along with Bremsstrahlung isochromat spectroscopy,
it is shown that a hard gap opens up for Ti content greater than equal to 0.2,
while compositions with x<0.2 exhibit finite intensity at the Fermi energy.
This establishes that the metal-insulator transition in this homovalent
substituted series of compounds is driven by Coulomb interaction leading to the
formation of a Mott gap, in contrast to transitions driven by disorder effects
or band flling.Comment: Accepted for publication in Phys. Rev.
Quantum Hall Ferromagnets: Induced Topological term and electromagnetic interactions
The quantum Hall ground state in materials like GaAs is well known
to be ferromagnetic in nature. The exchange part of the Coulomb interaction
provides the necessary attractive force to align the electron spins
spontaneously. The gapless Goldstone modes are the angular deviations of the
magnetisation vector from its fixed ground state orientation. Furthermore, the
system is known to support electrically charged spin skyrmion configurations.
It has been claimed in the literature that these skyrmions are fermionic owing
to an induced topological Hopf term in the effective action governing the
Goldstone modes. However, objections have been raised against the method by
which this term has been obtained from the microscopics of the system. In this
article, we use the technique of the derivative expansion to derive, in an
unambiguous manner, the effective action of the angular degrees of freedom,
including the Hopf term. Furthermore, we have coupled perturbative
electromagnetic fields to the microscopic fermionic system in order to study
their effect on the spin excitations. We have obtained an elegant expression
for the electromagnetic coupling of the angular variables describing these spin
excitations.Comment: 23 pages, Plain TeX, no figure
- …