580 research outputs found

    Magnetocapacitance effect in perovskite-superlattice based multiferroics

    Full text link
    We report the structural and magnetoelectrical properties of La0.7_{0.7}Ca0.3_{0.3}MnO3_3/BaTiO3_3 perovskite superlattices grown on (001)-oriented SrTiO3_3 by the pulsed laser deposition technique. Magnetic hysteresis loops together with temperature dependent magnetic properties exhibit well-defined coercivity and magnetic transition temperature (TC_C) \symbol{126}140 K. DCDC electrical studies of films show that the magnetoresistance (MR) is dependent on the BaTiO3_3 thickness and negative MRMR as high as 30% at 100K are observed. The ACAC electrical studies reveal that the impedance and capacitance in these films vary with the applied magnetic field due to the magnetoelectrical coupling in these structures - a key feature of multiferroics. A negative magnetocapacitance value in the film as high as 3% per tesla at 1kHz and 100K is demonstrated, opening the route for designing novel functional materials.Comment: To be published in Applied Physics Letter

    Magnetic-history-dependent nanostructural and resistivity changes in Pr0.5Ca0.5Mn0.98Cr0.02O3

    Full text link
    We show that nanostructure and resistivity of Pr0.5Ca0.5Mn0.98Cr0.02O3 are sensitive to whether the sample is zero-field-cooled (ZFC) of field-cooled (FC) either in the 'self magnetic field (H = 2 T)' of the electron microscope or under the external magnetic field of 2 T. FC resistivity at H = 2 T is lower than ZFC values below 140 K. The average value of the chare-orbital modulation vector (q = 0.44) of the FC crystallites is lower than that of the ZFC cystallites (q = 0.48) and the FC crystallites exhibit numerous defects like discommensuration, dislocations and regios with loss of superstructures compared to the ZFC crystallites.Comment: 7 pages, 3 figure

    The role of ferroelectric-ferromagnetic layers on the properties of superlattice-based multiferroics

    Full text link
    A series of superlattices and trilayers composed of ferromagnetic and ferroelectric or paraelectric layers were grown on (100) SrTiO3 by the pulsed laser deposition technique. Their structural and magneto-electric properties were examined. The superlattices made of ferromagnetic Pr0.85Ca0.15MnO3 (PCMO) and a ferroelectric, namely Ba0.6Sr0.4TiO3 (BST) or BaTiO3, showed enhanced magnetoresistance (MR) at high applied magnetic field, whereas such enhancement was absent in Pr0.85Ca0.15MnO3/SrTiO3 superlattices, which clearly demonstrates the preponderant role of the ferroelectric layers in this enhanced MR. Furthermore, the absence of enhanced MR in trilayers of PCMO/BST indicates that the magneto-electric coupling which is responsible for MR in these systems is stronger in multilayers than in their trilayer counterparts.Comment: to be published in J. Appl. Phy

    Gallium Substituted "114" YBaFe4O7: From a ferrimagnetic cluster glass to a cationic disordered spin glass

    Full text link
    The study of the ferrites YBaFe4-xGaxO7 shows that the substitution of Ga for Fe in YBaFe4O7 stabilizes the hexagonal symmetry for 0.40 < x < 0.70, at the expense of the cubic one. Using combined measurements of a. c. and d. c. magnetization, we establish that Ga substitution for Fe in YBaFe4O7 leads to an evolution from a geometrically frustrated spin glass (for x = 0) to a cationic disorder induced spin glass (x = 0.70). We also find an intermediate narrow range of doping where the samples are clearly phase separated having small ferrimagnetic clusters embedded in a spin glass matrix. The origin of the ferrimagnetic clusters lies in the change in symmetry of the samples from cubic to hexagonal (and a consequent lifting of the geometrical frustration) as a result of Ga doping. We also show the presence of exchange bias and domain wall pinning in these samples. The cause of both these effects can be traced back to the inherent phase separation present in the samples.Comment: 25 pages, 10 figure
    corecore