1,561 research outputs found

    IPMK and β-catenin take part in PLC-β1-dependent signaling pathway during myogenic differentiation

    Get PDF
    Phospholipase C (PLC)-β1 catalytic activity plays an essential role in the initiation of myogenic differentiation but the effectors involved in its signaling pathway are not well defined[1,2]. Here, we show that the overexpression of the Inositol Polyphosphate Multikinase (IPMK) promotes myogenic differentiation, and that IPMK targets the same cyclin D3 promoter region activated by PLC-β1. Moreover, cyclin D3 promoter activation relies upon c-jun binding to the promoter, both in response to PLC-β1 and to IPMK overexpression. Furthermore, both IPMK and PLC-β1 overexpression determines an increase in β-catenin translocation and accumulation to the nuclei of differentiating myoblasts resulting in higher MyoD activation. Therefore, our data show that PLC-β1, IPMK and β-catenin are mediators of the same signaling pathway that regulates cyclin D3 and myosin heavy chain (MYH) induction during myogenic differentiation

    Phosphoinositide-dependent signaling in cancer: A focus on phospholipase C isozymes

    Get PDF
    Phosphoinositides (PI) form just a minor portion of the total phospholipid content in cells but are significantly involved in cancer development and progression. In several cancer types, phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] play significant roles in regulating survival, proliferation, invasion, and growth of cancer cells. Phosphoinositide-specific phospholipase C (PLC) catalyze the generation of the essential second messengers diacylglycerol (DAG) and inositol 1,4,5 trisphosphate (InsP3) by hydrolyzing PtdIns(4,5)P2. DAG and InsP3 regulate Protein Kinase C (PKC) activation and the release of calcium ions (Ca2+) into the cytosol, respectively. This event leads to the control of several important biological processes implicated in cancer. PLCs have been extensively studied in cancer but their regulatory roles in the oncogenic process are not fully understood. This review aims to provide up-to-date knowledge on the involvement of PLCs in cancer. We focus specifically on PLC\u3b2, PLC\u3b3, PLC\u3b4, and PLC\u3c9 isoforms due to the numerous evidence of their involvement in various cancer types

    Nuclear Inositides and Inositide-Dependent Signaling Pathways in Myelodysplastic Syndromes

    Get PDF
    Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies characterized by peripheral blood cytopenia and abnormal myeloproliferation, as well as a variable risk of evolution into acute myeloid leukemia (AML). The nucleus is a highly organized organelle with several distinct domains where nuclear inositides localize to mediate essential cellular events. Nuclear inositides play a critical role in the modulation of erythropoiesis or myelopoiesis. Here, we briefly review the nuclear structure, the localization of inositides and their metabolic enzymes in subnuclear compartments, and the molecular aspects of nuclear inositides in MDS

    Cauliflower Mosaic Virus TAV, a Plant Virus Protein That Functions like Ribonuclease H1 and is Cytotoxic to Glioma Cells

    Get PDF
    Recent comparisons between plant and animal viruses reveal many common principles that underlie how all viruses express their genetic material, amplify their genomes, and link virion assembly with replication. Cauliflower mosaic virus (CaMV) is not infectious for human beings. Here, we show that CaMV transactivator/viroplasmin protein (TAV) shares sequence similarity with and behaves like the human ribonuclease H1 (RNase H1) in reducing DNA/RNA hybrids detected with S9.6 antibody in HEK293T cells. We showed that TAV is clearly expressed in the cytosol and in the nuclei of transiently transfected human cells, similar to its distribution in plants. TAV also showed remarkable cytotoxic effects in U251 human glioma cells in vitro. *ese characteristics pave the way for future analysis on the use of the plant virus protein TAV, as an alternative to human RNAse H1 during gene therapy in human cells

    Nuclear Phosphoinositides as Key Determinants of Nuclear Functions

    Get PDF
    Polyphosphoinositides (PPIns) are signalling messengers representing less than five per cent of the total phospholipid concentration within the cell. Despite their low concentration, these lipids are critical regulators of various cellular processes, including cell cycle, differentiation, gene transcription, apoptosis and motility. PPIns are generated by the phosphorylation of the inositol head group of phosphatidylinositol (PtdIns). Different pools of PPIns are found at distinct subcellular compartments, which are regulated by an array of kinases, phosphatases and phospholipases. Six of the seven PPIns species have been found in the nucleus, including the nuclear envelope, the nucleoplasm and the nucleolus. The identification and characterisation of PPIns interactor and effector proteins in the nucleus have led to increasing interest in the role of PPIns in nuclear signalling. However, the regulation and functions of PPIns in the nucleus are complex and are still being elucidated. This review summarises our current understanding of the localisation, biogenesis and physiological functions of the different PPIns species in the nucleus

    Epigenetic regulation of nuclear PLCbeta1 and Cyclin D3 during Azacitidine treatment

    Get PDF
    The Myelodysplastic Syndromes (MDS) are a heterogeneous group of bone marrow disorders characterized by alterations of the hematopoietic stem cells that lead to anemia, neutropenia, bleeding problems and infections. The evidence of a clinical correlation between the presence of a monoallelic gene deletion of Phospholipase Cβ1 (PLCβ1) and the progression of MDS to Acute Myeloid Leukemia (AML) opened new perspectives of research and treatments. Patients affected by MDS with a higher risk of AML evolution have a reduction in the expression of the nuclear PLCβ1, which is also epigenetically relevant in MDS. This strengthens the importance of PLCβ1 localization. In fact, PLCβ1 is a molecular target for hypomethylating agents, such Azacitidine (AZA)(1). High-risk MDS patients that respond to the drug showed an increased expression of nuclear PLCβ1 and its downstream target Cyclin D3 (CCND3), an induction of normal myeloid differentiation, and a better prognosis. Stemming from these data, our goal was to analyze the correlation between CCND3, PLCβ1 and AZA treatment. Firstly, we treated two different cellular lines, AML HL60 and histiocytic lymphoma U937, with AZA 5μM (Ec50 for HL60 cells) for 24 hours. Then, we used Real-Time PCR and Western blot to quantify both gene and protein expression. Moreover, we showed that CCND3 promoter has one CpG island. For this reason, it is possible that AZA could directly affect both PLCβ1 and CCND3 promoters. Therefore, we studied PLCβ1 binding to CCND3 promoter by chromatin immunoprecipitation (CHIP), before and after AZA treatment. Our results evidenced that the recruitment of PLCβ1 to CCND3 promoter is specifically increased after AZA treatment, leading to suppose that PLCβ1 could have a pivotal role in MDS with either a direct or indirect effect on cell cycle, proliferation and differentiation. These complicate relations need future deepening in order to demonstrate how PLCβ1 binding actually regulates CCND3 expression and how much this expression depends on CCND3 direct promoter demethylation and PLCβ1 control

    Impact of phospholipase C beta 1 in glioblastoma: a study on the main mechanisms of tumor aggressiveness

    Get PDF
    Glioblastoma represents the most lethal brain tumor in adults. Several studies have shown the key role of phospholipase C beta 1 (PLC beta 1) in the regulation of many mechanisms within the central nervous system suggesting PLC beta 1 as a novel signature gene in the molecular classification of high-grade gliomas. This study aims to determine the pathological impact of PLC beta 1 in glioblastoma, confirming that PLC beta 1 gene expression correlates with glioma's grade, and it is lower in 50 glioblastoma samples compared to 20 healthy individuals. PLC beta 1 silencing in cell lines and primary astrocytes, leads to increased cell migration and invasion, with the increment of mesenchymal transcription factors and markers, as Slug and N-Cadherin and metalloproteinases. Cell proliferation, through increased Ki-67 expression, and the main survival pathways, as beta-catenin, ERK1/2 and Stat3 pathways, are also affected by PLC beta 1 silencing. These data suggest a potential role of PLC beta 1 in maintaining a normal or less aggressive glioma phenotype

    Clinical features and outcomes of elderly hospitalised patients with chronic obstructive pulmonary disease, heart failure or both

    Get PDF
    Background and objective: Chronic obstructive pulmonary disease (COPD) and heart failure (HF) mutually increase the risk of being present in the same patient, especially if older. Whether or not this coexistence may be associated with a worse prognosis is debated. Therefore, employing data derived from the REPOSI register, we evaluated the clinical features and outcomes in a population of elderly patients admitted to internal medicine wards and having COPD, HF or COPD + HF. Methods: We measured socio-demographic and anthropometric characteristics, severity and prevalence of comorbidities, clinical and laboratory features during hospitalization, mood disorders, functional independence, drug prescriptions and discharge destination. The primary study outcome was the risk of death. Results: We considered 2,343 elderly hospitalized patients (median age 81 years), of whom 1,154 (49%) had COPD, 813 (35%) HF, and 376 (16%) COPD + HF. Patients with COPD + HF had different characteristics than those with COPD or HF, such as a higher prevalence of previous hospitalizations, comorbidities (especially chronic kidney disease), higher respiratory rate at admission and number of prescribed drugs. Patients with COPD + HF (hazard ratio HR 1.74, 95% confidence intervals CI 1.16-2.61) and patients with dementia (HR 1.75, 95% CI 1.06-2.90) had a higher risk of death at one year. The Kaplan-Meier curves showed a higher mortality risk in the group of patients with COPD + HF for all causes (p = 0.010), respiratory causes (p = 0.006), cardiovascular causes (p = 0.046) and respiratory plus cardiovascular causes (p = 0.009). Conclusion: In this real-life cohort of hospitalized elderly patients, the coexistence of COPD and HF significantly worsened prognosis at one year. This finding may help to better define the care needs of this population

    Antidiabetic Drug Prescription Pattern in Hospitalized Older Patients with Diabetes

    Get PDF
    Objective: To describe the prescription pattern of antidiabetic and cardiovascular drugs in a cohort of hospitalized older patients with diabetes. Methods: Patients with diabetes aged 65 years or older hospitalized in internal medicine and/or geriatric wards throughout Italy and enrolled in the REPOSI (REgistro POliterapuie SIMI—Società Italiana di Medicina Interna) registry from 2010 to 2019 and discharged alive were included. Results: Among 1703 patients with diabetes, 1433 (84.2%) were on treatment with at least one antidiabetic drug at hospital admission, mainly prescribed as monotherapy with insulin (28.3%) or metformin (19.2%). The proportion of treated patients decreased at discharge (N = 1309, 76.9%), with a significant reduction over time. Among those prescribed, the proportion of those with insulin alone increased over time (p = 0.0066), while the proportion of those prescribed sulfonylureas decreased (p < 0.0001). Among patients receiving antidiabetic therapy at discharge, 1063 (81.2%) were also prescribed cardiovascular drugs, mainly with an antihypertensive drug alone or in combination (N = 777, 73.1%). Conclusion: The management of older patients with diabetes in a hospital setting is often sub-optimal, as shown by the increasing trend in insulin at discharge, even if an overall improvement has been highlighted by the prevalent decrease in sulfonylureas prescription

    The “Diabetes Comorbidome”: A Different Way for Health Professionals to Approach the Comorbidity Burden of Diabetes

    Get PDF
    (1) Background: The disease burden related to diabetes is increasing greatly, particularly in older subjects. A more comprehensive approach towards the assessment and management of diabetes’ comorbidities is necessary. The aim of this study was to implement our previous data identifying and representing the prevalence of the comorbidities, their association with mortality, and the strength of their relationship in hospitalized elderly patients with diabetes, developing, at the same time, a new graphic representation model of the comorbidome called “Diabetes Comorbidome”. (2) Methods: Data were collected from the RePoSi register. Comorbidities, socio-demographic data, severity and comorbidity indexes (Cumulative Illness rating Scale CIRS-SI and CIRS-CI), and functional status (Barthel Index), were recorded. Mortality rates were assessed in hospital and 3 and 12 months after discharge. (3) Results: Of the 4714 hospitalized elderly patients, 1378 had diabetes. The comorbidities distribution showed that arterial hypertension (57.1%), ischemic heart disease (31.4%), chronic renal failure (28.8%), atrial fibrillation (25.6%), and COPD (22.7%), were the more frequent in subjects with diabetes. The graphic comorbidome showed that the strongest predictors of death at in hospital and at the 3-month follow-up were dementia and cancer. At the 1-year follow-up, cancer was the first comorbidity independently associated with mortality. (4) Conclusions: The “Diabetes Comorbidome” represents the perfect instrument for determining the prevalence of comorbidities and the strength of their relationship with risk of death, as well as the need for an effective treatment for improving clinical outcomes
    corecore