22 research outputs found

    Involvement of lactate and pyruvate in the anti-inflammatory effects exerted by voluntary activation of the sympathetic nervous system

    Get PDF
    We recently demonstrated that the sympathetic nervous system can be voluntarily activated following a training program consisting of cold exposure, breathing exercises, and meditation. This resulted in profound attenuation of the systemic inflammatory response elicited by lipopolysaccharide (LPS) administration. Herein, we assessed whether this training program affects the plasma metabolome and if these changes are linked to the immunomodulatory effects observed. A total of 224 metabolites were identified in plasma obtained from 24 healthy male volunteers at six timepoints, of which 98 were significantly altered following LPS administration. Effects of the training program were most prominent shortly after initiation of the acquired breathing exercises but prior to LPS administration, and point towards increased activation of the Cori cycle. Elevated concentrations of lactate and pyruvate in trained individuals correlated with enhanced levels of anti-inflammatory interleukin (IL)-10. In vitro validation experiments revealed that co-incubation with lactate and pyruvate enhances IL-10 production and attenuates the release of pro-inflammatory IL-1β and IL-6 by LPS-stimulated leukocytes. Our results demonstrate that practicing the breathing exercises acquired during the training program results in increased activity of the Cori cycle. Furthermore, this work uncovers an important role of lactate and pyruvate in the anti-inflammatory phenotype observed in trained subjects.</p

    Metformin Alters Human Host Responses to Mycobacterium tuberculosis in Healthy Subjects.

    Get PDF
    BACKGROUND: Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis. METHODS: We investigated in vitro and in vivo effects of metformin in humans. RESULTS: Metformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1β but increased phagocytosis activity and reactive oxygen species production. CONCLUSION: Metformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis

    Vi vågade oss också västerut! : Kisakvinnornas utvandring 1845-1915

    Get PDF
    Lactate, the end product of anaerobic glycolysis, is produced in high amounts by innate immune cells during inflammatory activation. Although immunomodulating effects of lactate have been reported, evidence from human studies is scarce. Here we show that expression of genes involved in lactate metabolism and transport is modulated in human immune cells during infection and upon inflammatory activation with TLR ligands in vitro, indicating an important role for lactate metabolism in inflammation. Extracellular lactate induces metabolic reprogramming in innate immune cells, as evidenced by reduced glycolytic and increased oxidative rates of monocytes immediately after exposure to lactate. A short-term infusion of lactate in humans in vivo increased ex vivo glucose consumption of PBMCs, but effects on metabolic rates and cytokine production were limited. Interestingly, long-term treatment with lactate ex vivo, reflecting pathophysiological conditions in local microenvironments such as tumor or adipose tissue, significantly modulated cytokine production with predominantly anti-inflammatory effects. We found time- and stimuli-dependent effects of extracellular lactate on cytokine production, further emphasizing the complex interplay between metabolism and immune cell function. Together, our findings reveal lactate as a modulator of immune cell metabolism which translates to reduced inflammation and may ultimately function as a negative feedback signal to prevent excessive inflammatory responses

    Different pathogenic stimuli induce specific metabolic rewiring in human monocytes

    No full text
    Recent studies have demonstrated that upon encountering a pathogenic stimulus, robust metabolic rewiring of immune cells occurs. A switch away from oxidative phosphorylation to glycolysis, even in the presence of sufficient amounts of oxygen (akin the Warburg effect), is typically observed in activated innate and adaptive immune cells and is thought to accommodate adequate inflammatory responses. However, whether the Warburg effect is a general phenomenon applicable in human monocytes exposed to different pathogenic stimuli is unknown. Our results using human monocytes from healthy donors demonstrate that the Warburg effect only holds true for TLR4 activated cells. Although activation of other TLRs leads to an increase in glycolysis, no reduction or even an enhancement in oxidative phosphorylation is observed. Moreover, specific metabolic rewiring occurs in TLR4 vs. TLR2 stimulated cells characterized by altered gene expression profiles of pathways related to metabolism, changes in spare respiratory capacity of the cells and differential regulation of mitochondrial enzyme activity. Similarly, results from ex vivo and in vivo studies demonstrate metabolic rewiring of immune cells that is highly dependent on the type of pathogenic stimulus. Although the Warburg effect is observed in human monocytes after TLR4 activation, we propose that this typical metabolic response is not applicable to other inflammatory signalling routes including TLR2 in human monocytes. Instead, each pathogenic stimulus and subsequently activated inflammatory signalling cascade induces specific metabolic rewiring of the immune cell to accommodate an appropriate response

    Insulin acutely activates metabolism of primary human monocytes and promotes a proinflammatory phenotype

    No full text
    Increased glycolysis is a metabolic trait of activated innate immune cells and supports functional changes including cytokine production. Insulin drives glycolysis in nonimmune cells, yet its metabolic effects on human innate immune cells remain unexplored. Potential effects of insulin on immune cell metabolism may occur acutely after a postprandial increase in plasma insulin levels or as a consequence of chronically elevated insulin levels as observed in obese insulin-resistant individuals and patients with diabetes. Here, we investigated the effects of acute and chronic exposure to insulin on metabolism and function of primary human monocytes. Insulin acutely activated the PI3K/Akt/mTOR pathway in monocytes and increased both oxygen consumption and glycolytic rates. Functionally, acute exposure to insulin increased LPS-induced IL-6 secretion and reactive oxygen species production. To model chronically elevated insulin levels in patients with diabetes, we exposed monocytes from healthy individuals for 24 h to insulin. Although we did not find any changes in expression of metabolic genes that are regulated by insulin in non-immune cells, chronic exposure to insulin increased LPS-induced TNFα production and enhanced MCP-1-directed migration. Supporting this observation, we identified a positive correlation between plasma insulin levels and macrophage numbers in adipose tissue of overweight individuals. Altogether, insulin acutely activates metabolism of human monocytes and induces a shift toward a more proinflammatory phenotype, which may contribute to chronic inflammation in patients with diabetes

    Proinflammatory effects of hypoglycemia in humans with or without diabetes

    No full text
    Severe hypoglycemic events have been associated with increased cardiovascular mortality in patients with diabetes, which may be explained by hypoglycemiainduced inflammation. We used ex vivo stimulations of peripheral blood mononuclear cells (PBMCs) and monocytes obtained during hyperinsulinemic-euglycemic (5.0 mmol/L)-hypoglycemic (2.6 mmol/L) clamps in 11 healthy participants, 10 patients with type 1 diabetes and normal awareness of hypoglycemia (NAH), and 10 patients with type 1 diabetes and impaired awareness (IAH) to test whether the composition and inflammatory function of immune cells adapt to a more proinflammatory state after hypoglycemia. Hypoglycemia increased leukocyte numbers in healthy control participants and patients with NAH but not in patients with IAH. Leukocytosis strongly correlated with the adrenaline response to hypoglycemia. Ex vivo, PBMCs and monocytes displayed a more robust cytokine response to microbial stimulation after hypoglycemia compared with euglycemia, although it was less pronounced in patients with IAH. Of note, hypoglycemia increased the expression of markers of demargination and inflammation in PBMCs. We conclude that hypoglycemia promotes mobilization of specific leukocyte subsets from themarginal pool and induces proinflammatory functional changes in immune cells. Inflammatory responses were less pronounced in IAH, indicating that counterregulatory hormone responses are key modulators of hypoglycemia-induced proinflammatory effects. Hypoglycemia-induced proinflammatory changes may promote a sustained inflammatory state.</p

    Insulin acutely activates metabolism of primary human monocytes and promotes a proinflammatory phenotype

    No full text
    Increased glycolysis is a metabolic trait of activated innate immune cells and supports functional changes including cytokine production. Insulin drives glycolysis in nonimmune cells, yet its metabolic effects on human innate immune cells remain unexplored. Potential effects of insulin on immune cell metabolism may occur acutely after a postprandial increase in plasma insulin levels or as a consequence of chronically elevated insulin levels as observed in obese insulin-resistant individuals and patients with diabetes. Here, we investigated the effects of acute and chronic exposure to insulin on metabolism and function of primary human monocytes. Insulin acutely activated the PI3K/Akt/mTOR pathway in monocytes and increased both oxygen consumption and glycolytic rates. Functionally, acute exposure to insulin increased LPS-induced IL-6 secretion and reactive oxygen species production. To model chronically elevated insulin levels in patients with diabetes, we exposed monocytes from healthy individuals for 24 h to insulin. Although we did not find any changes in expression of metabolic genes that are regulated by insulin in non-immune cells, chronic exposure to insulin increased LPS-induced TNFα production and enhanced MCP-1-directed migration. Supporting this observation, we identified a positive correlation between plasma insulin levels and macrophage numbers in adipose tissue of overweight individuals. Altogether, insulin acutely activates metabolism of human monocytes and induces a shift toward a more proinflammatory phenotype, which may contribute to chronic inflammation in patients with diabetes.</p

    Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males

    Get PDF
    Abstract Sodium butyrate is well-known for its immune-modulatory properties. Studies until now only focused on the in vitro effects of butyrate or assessed local effects in the gut upon butyrate administration. In this trial, we studied the systemic anti-inflammatory effects induced by sodium butyrate supplementation in humans. Nine healthy (Lean) and ten obese (metabolic syndrome group, MetSyn) males were given 4 grams sodium butyrate daily for 4 weeks. PBMCs were isolated before and after supplementation for direct stimulation experiments and induction of trained immunity by oxidized low-density lipoprotein (oxLDL), β-glucan, or Bacillus Calmette-Guérin vaccine (BCG). Butyrate supplementation moderately affected some of the cytokine responses in the MetSyn group. In the direct stimulation setup, effects of butyrate supplementation were limited. Interestingly, butyrate supplementation decreased oxLDL-induced trained immunity in the MetSyn group for LPS-induced IL-6 responses and Pam3CSK4-induced TNF-α responses. Induction of trained immunity by β-glucan was decreased by butyrate in the MetSyn group for Pam3CSK4-induced IL-10 production. In this study, while having only limited effects on the direct stimulation of cytokine production, butyrate supplementation significantly affected trained immunity in monocytes of obese individuals with metabolic complications. Therefore, oral butyrate supplementation may be beneficial in reducing the overall inflammatory status of circulating monocytes in patients with metabolic syndrome

    Microbial stimulation of different Toll-like receptor signalling pathways induces diverse metabolic programmes in human monocytes

    No full text
    Microbial stimuli such as lipopolysaccharide (LPS) induce robust metabolic rewiring in immune cells known as the Warburg effect. It is unknown whether this increase in glycolysis and decrease in oxidative phosphorylation (OXPHOS) is a general characteristic of monocytes that have encountered a pathogen. Using CD14+ monocytes from healthy donors, we demonstrated that most microbial stimuli increased glycolysis, but that only stimulation of Toll-like receptor (TLR) 4 with LPS led to a decrease in OXPHOS. Instead, activation of other TLRs, such as TLR2 activation by Pam3CysSK4 (P3C), increased oxygen consumption and mitochondrial enzyme activity. Transcriptome and metabolome analysis of monocytes stimulated with P3C versus LPS confirmed the divergent metabolic responses between both stimuli, and revealed significant differences in the tricarboxylic acid cycle, OXPHOS and lipid metabolism pathways following stimulation of monocytes with P3C versus LPS. At a functional level, pharmacological inhibition of complex I of the mitochondrial electron transport chain diminished cytokine production and phagocytosis in P3C- but not LPS-stimulated monocytes. Thus, unlike LPS, complex microbial stimuli and the TLR2 ligand P3C induce a specific pattern of metabolic rewiring that involves upregulation of both glycolysis and OXPHOS, which enables activation of host defence mechanisms such as cytokine production and phagocytosis
    corecore