2,424 research outputs found

    A Circle Has No End: Role of Cyclic Topology and Accompanying Structural Reorganization on the Hole Distribution in Cyclic and Linear Poly‑p‑phenylene Molecular Wires

    Get PDF
    π-Conjugated organic oligomers/polymers hold great promise as long-range charge-transfer materials for modern photovoltaic applications. However, a set of criteria for the rational design of functional materials is not yet available, in part because of a lack of understanding of charge distribution in extended π-conjugated systems of different topologies, and concomitant effects on redox and optical properties. Herein we demonstrate the role of cyclic versus linear topology in controlling the redox/optical properties and hole distribution in poly-p-phenylenes (PPs) with the aid of experiment, computation, and our recently developed multistate parabolic model (MPM). It is unequivocally shown that the hole distribution in both cyclic and linear poly-p-phenylene (n ≥ 7) cation radicals is limited to seven p-phenylene units, despite the very different topologies. However, the effect of topology is evidenced in the very different trends in oxidation potentials of cyclic versus linear PPs, which are shown to originate largely from the geometrical distortion of individual p-phenylene units in cyclic PPs. The presence of additional pairwise electronic coupling element in cyclic PPs, absent in linear PPs, plays a significant role only in smaller cyclic PP5 and PP6. This study provides a detailed conceptual description of cyclic and linear poly-p-phenylene cation radicals and demonstrates the versatility and predictive power of MPM, an important new tool for the design and synthesis of novel and efficient charge-transfer materials for molecular electronics and photovoltaic applications, an area of widespread interest

    Does Koopmans\u27 Paradigm for 1-Electron Oxidation Always Hold? Breakdown of IP/Eox Relationship for p-Hydroquinone Ethers and the Role of Methoxy Group Rotation

    Get PDF
    Koopmans’ paradigm states that electron loss occurs from HOMO, thus forming the basis for the observed linear relationships between HOMO/IP, HOMO/Eox, and IP/Eox. In cases where a molecule undergoes dramatic structural reorganization upon 1-electron oxidation, the IP/Eox relationship does not hold, and the origin of which is not understood. For example, X-ray crystallography of the neutral and cation radicals of bicyclo[2.2.1]heptane-annulated p-hydroquinone ethers (THE and MHE) showed that they undergo electron-transfer-induced conformational reorganization and show breakdown of the IP/Eox relationship. DFT calculations revealed that Koopmans’ paradigm still holds true because the electron-transfer-induced subtle conformational reorganization, responsible for the breakdown of IP/Eox relationship, is also responsible for the reordering of HOMO and HOMO-1. Perceived failure of Koopmans’ paradigm in cases of THE and MHE assumes that both vertical and adiabatic electron detachments involve the same HOMO; however, this study demonstrates that the vertical ionization and adiabatic oxidation occur from different molecular orbitals due to reordering of HOMO/HOMO-1. The underpinnings of this finding will spur widespread interest in designing next-generation molecules beyond HQEs, whose electronic structures can be modulated by electron-transfer-induced conformation reorganization

    Two\u27s Company, Three\u27s a Crowd: Exciton Localization in Cofacially Arrayed Polyfluorenes

    Get PDF
    Understanding the mechanisms of long-range energy transfer through polychromophoric assemblies is critically important in photovoltaics and biochemical systems. Using a set of cofacially arrayed polyfluorenes (Fn), we investigate the mechanism of (singlet) exciton delocalization in π-stacked polychromophoric assemblies. Calculations reveal that effective stabilization of an excimeric state requires an ideal sandwich-like arrangement; yet surprisingly, emission spectroscopy indicates that exciton delocalization is limited to only two fluorene units for all n. Herein, we show that delocalization is determined by the interplay between the energetic gain from delocalization, which quickly saturates beyond two units in larger Fn, and an energetic penalty associated with structural reorganization, which increases linearly with n. With these insights, we propose a hopping mechanism for exciton transfer, based upon the presence of multiple excimeric tautomers of similar energy in larger polyfluorenes (n ≥ 4) together with the anticipated low thermal barrier of their interconversion

    Energy Gap between the Poly-\u3cem\u3ep\u3c/em\u3e-phenylene Bridge and Donor Groups Controls the Hole Delocalization in Donor–Bridge–Donor Wires

    Get PDF
    Poly-p-phenylene wires are critically important as charge-transfer materials in photovoltaics. A comparative analysis of a series of poly-p-phenylene (RPPn) wires, capped with isoalkyl (iAPPn), alkoxy (ROPPn), and dialkylamino (R2NPPn) groups, shows unexpected evolution of oxidation potentials, i.e., decrease (−260 mV) for iAPPn, while increase for ROPPn (+100 mV) and R2NPPn (+350 mV) with increasing number of p-phenylenes. Moreover, redox/optical properties and DFT calculations of R2NPPn/R2NPPn+• further show that the symmetric bell-shaped hole distribution distorts and shifts toward one end of the molecule with only 4 p-phenylenes in R2NPPn+•, while shifting of the hole occurs with 6 and 8 p-phenylenes in ROPPn+• and iAPPn+•, respectively. Availability of accurate experimental data on highly electron-rich dialkylamino-capped R2NPPn together with ROPPn and iAPPn allowed us to demonstrate, using our recently developed Marcus-based multistate model (MSM), that an increase of oxidation potentials in R2NPPn arises due to an interplay between the electronic coupling (Hab) and energy difference between the end-capped groups and bridging phenylenes (Δε). A comparison of the three series of RPPn with varied Δε further demonstrates that decrease/increase/no change in oxidation energies of RPPn can be predicted based on the energy gap Δε and coupling Hab, i.e., decrease if Δε \u3c Hab (i.e., iAPPn), increase if Δε \u3e Hab (i.e., R2NPPn), and minimal change if Δε ≈ Hab (i.e., ROPPn). MSM also reproduces the switching of the nature of electronic transition in higher homologues of R2NPPn+• (n ≥ 4). These findings will aid in the development of improved models for charge-transfer dynamics in donor–bridge–acceptor systems

    Does Koopmans’ Paradigm for 1-Electron Oxidation Always Hold? Breakdown of IP/E\u3csub\u3eox\u3c/sub\u3e Relationship for \u3cem\u3ep\u3c/em\u3e-Hydroquinone Ethers and the Role of Methoxy Group Rotation

    Get PDF
    Koopmans’ paradigm states that electron loss occurs from HOMO, thus forming the basis for the observed linear relationships between HOMO/IP, HOMO/Eox, and IP/Eox. In cases where a molecule undergoes dramatic structural reorganization upon 1-electron oxidation, the IP/Eoxrelationship does not hold, and the origin of which is not understood. For example, X-ray crystallography of the neutral and cation radicals of bicyclo[2.2.1]heptane-annulated p-hydroquinone ethers (THE and MHE) showed that they undergo electron-transfer-induced conformational reorganization and show breakdown of the IP/Eox relationship. DFT calculations revealed that Koopmans’ paradigm still holds true because the electron-transfer-induced subtle conformational reorganization, responsible for the breakdown of IP/Eox relationship, is also responsible for the reordering of HOMO and HOMO-1. Perceived failure of Koopmans’ paradigm in cases of THE and MHE assumes that both vertical and adiabatic electron detachments involve the same HOMO; however, this study demonstrates that the vertical ionization and adiabatic oxidation occur from different molecular orbitals due to reordering of HOMO/HOMO-1. The underpinnings of this finding will spur widespread interest in designing next-generation molecules beyond HQEs, whose electronic structures can be modulated by electron-transfer-induced conformation reorganization

    Electron Pressure and Lattice Vibration in Gold

    Get PDF

    Study of Dispersion Relations Based on a Five Parameter Model

    Get PDF

    Poly-p-hydroquinone Ethers: Isoenergetic Molecular Wires with Length-Invariant Oxidation Potentials and Cation Radical Excitation Energies

    Get PDF
    Typical poly-p-phenylene wires are characterized by strong interchromophoric electronic coupling with redox and optical properties being highly length-dependent. Herein we show that an incorporation of a pair of para-methoxy groups at each p-phenylene unit in poly-p-phenylene wires (i.e., PHEn) changes the nodal structure of HOMO that leads to length-invariant oxidation potentials and cation radical excitation energies. As such, PHEn represents a unique class of isoenergetic wires where hole delocalization mainly occurs via dynamic hopping and thus may serve as an efficient medium for long-range charge transfer. Availability of these wires will allow demonstration of long-range electron transfer via incoherent hopping using donor-bridge-acceptor systems with isoenergetic PHEn-based wires as bridges

    Dispersion Spectra of FCC Metals (Pt, Pb and Th)

    Get PDF
    corecore