19 research outputs found

    A Reliable Communication Model Based on IEEE802.15.4 for WSANs in Smart Grids

    Get PDF
    Creating cyber-physical systems (CPSs) based on wireless sensor and actuator networks (WSANs) has great potential to improve the performance of Smart Grid. In addition, IEEE802.15.4 has widely been regarded as an appropriate standard for WSANs, due to some striking and unique features. WSANs require provisioning strict quality of service (QoS) due to noisy harsh environments in Smart Grid applications. Although analytical models have been studied in the literature, they have not provided a full-fledged model for Smart Grid. In this paper, we have added a MAC-level buffer, and a novel Markov chain model has been also proposed. By comparison with previous studies, retransmission confines, acknowledgment, packet length variation, saturated traffic, and degenerate distribution of packet generation are accounted for. The algorithm has been experimentally implemented and appraised on a platform with self-designed WSAN. The analytical model predicts well our exhaustive experiments. Further, Monte Carlo simulations validate mathematical results

    Conceptualization of Addiction to Romantic Relationships: A Conceptual Model

    Get PDF
    Introduction: Addiction to romantic relationship is one of the prevalent disorders in the field of psychology. The objective of the present study is to formulate a qualitative model of addiction to romantic relationships. Methods: The research is an applied study using discovery manner, in which, qualitative research method and grounded theory were utilized. The population was the entire people who were addicted to romantic relationships, selecting purposefully 100 samples for interview process. To collect data, in-depth interview was used, and then, after the implementation of the data, they prepared for analysis. The process of data analysis was deductive. In the other hand, there was no previous conceptual framework for coding and categorizing; rather, it was analyzed freely by coding technique of grounded theory. Results: Regarding the results, the final model of the study comprised eight different concepts, including: affective mental, family, emotional, needs, critics, consequences factors, and the factors related to relationship. Discussion: The results addressed the different context and dimensions of vulnerability to romantic relationships addiction, thus, considering the results of the present study, practitioners particularly psychologists can adopt appropriate intervention either in treatment or prevention of romantic relationship addiction

    Magnesiothermic Reduction of Silica: A Machine Learning Study

    Get PDF
    undamental studies have been carried out experimentally and theoretically on the magnesiothermic reduction of silica with different Mg/SiO2 molar ratios (1–4) in the temperature range of 1073 to 1373 K with different reaction times (10–240 min). Due to the kinetic barriers occurring in metallothermic reductions, the equilibrium relations calculated by the well-known thermochemical software FactSage (version 8.2) and its databanks are not adequate to describe the experimental observations. The unreacted silica core encapsulated by the reduction products can be found in some parts of laboratory samples. However, other parts of samples show that the metallothermic reduction disappears almost completely. Some quartz particles are broken into fine pieces and form many tiny cracks. Magnesium reactants are able to infiltrate the core of silica particles via tiny fracture pathways, thereby enabling the reaction to occur almost completely. The traditional unreacted core model is thus inadequate to represent such complicated reaction schemes. In the present work, an attempt is made to apply a machine learning approach using hybrid datasets in order to describe complex magnesiothermic reductions. In addition to the experimental laboratory data, equilibrium relations calculated by the thermochemical database are also introduced as boundary conditions for the magnesiothermic reductions, assuming a sufficiently long reaction time. The physics-informed Gaussian process machine (GPM) is then developed and used to describe hybrid data, given its advantages when describing small datasets. A composite kernel for the GPM is specifically developed to mitigate the overfitting problems commonly encountered when using generic kernels. Training the physics-informed Gaussian process machine (GPM) with the hybrid dataset results in a regression score of 0.9665. The trained GPM is thus used to predict the effects of Mg-SiO2 mixtures, temperatures, and reaction times on the products of a magnesiothermic reduction, that have not been covered by experiments. Additional experimental validation indicates that the GPM works well for the interpolates of the observations.publishedVersio

    Disease - caused transformations: Phenomenological study of illness experience in people with cardiovascular diseases

    Get PDF
    Background: The experience of cardiovascular diseases affects various physical, psychological, social and existential aspects of the patient. But, after studying the research background, it was found that Each of the conducted studies have studied only one of these dimensions. Therefore, the absence of a research that examines all the mentioned components in relation to each other is a sign of the existence of a scientific gap in this field. Aims: The present research was conducted with the aim of studying the "disease experience" in people suffering from cardiovascular diseases. Methods: In this qualitative research, interpretive phenomenological method was used. Sampling was done using the purposeful sampling method and in order to collect data, a semi-structured interview based on the axes proposed by Spradley (2016) was conducted individually with 16 cardiovascular patients. The data were analyzed based on the 6-step strategy of Smith, Larkin and Flowers (2021) and using MAXQDA-2020 software. Results: From the analysis of the findings, the central category of "Disease-caused Transformations" was identified, which includes five main categories of phenomenal body, agency barrier, communication interference, difficult emotional experiences, and existential challenges. Conclusion: According to the obtained results, it can be said that cardiovascular diseases cause profound changes in various aspects of the patients' personal and social life. Using the categories identified in the current research can be a guide for specialists to evaluate that In which of the categories of "pathological changes" does the cardiovascular patient have more serious problems and as a result, it can help specialists in designing and implementing interventions according to the same category

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Kinetics of Magnesiothermic Reduction of Natural Quartz

    No full text
    In this work, the kinetics of natural quartz reduction by Mg to produce either Si or Mg2Si was studied through quantitative phase analysis. Reduction reaction experiments were performed at various temperatures, reaction times and Mg to SiO2 mole ratios of 2 and 4. Rietveld refinement of X-ray diffraction patterns was used to obtain phase distributions in the reacted samples. SEM and EPMA examinations were performed to evaluate the microstructural change during reduction. The results indicated that the reduction reaction rate was slower at a mole ratio of 2 than 4 at the same temperature, as illustrated by the total amount of Si formed (the percent of Si that is reduced to either Si or Mg2Si to total amount of Si) being 59% and 75%, respectively, after 240 min reaction time for mole ratios of 2 and 4. At the mole ratio of 4, the reaction rate was strongly dependent on the reaction temperature, where SiO2 was completely reduced after 20 min at 1273 K. At the lower temperatures of 1173 and 1073 K, total Si formed was 75% and 39%, respectively, after 240 min reaction time. The results of the current work show that Mg2Si can be produced through the magnesiothermic reduction of natural quartz with high yield. The obtained Mg2Si can be processed further to produce silane gas as a precursor to high purity Si. The combination of these two processes offers the potential for a more direct and low carbon method to produce Si with high purity

    Kinetics of Magnesiothermic Reduction of Natural Quartz

    No full text
    In this work, the kinetics of natural quartz reduction by Mg to produce either Si or Mg2Si was studied through quantitative phase analysis. Reduction reaction experiments were performed at various temperatures, reaction times and Mg to SiO2 mole ratios of 2 and 4. Rietveld refinement of X-ray diffraction patterns was used to obtain phase distributions in the reacted samples. SEM and EPMA examinations were performed to evaluate the microstructural change during reduction. The results indicated that the reduction reaction rate was slower at a mole ratio of 2 than 4 at the same temperature, as illustrated by the total amount of Si formed (the percent of Si that is reduced to either Si or Mg2Si to total amount of Si) being 59% and 75%, respectively, after 240 min reaction time for mole ratios of 2 and 4. At the mole ratio of 4, the reaction rate was strongly dependent on the reaction temperature, where SiO2 was completely reduced after 20 min at 1273 K. At the lower temperatures of 1173 and 1073 K, total Si formed was 75% and 39%, respectively, after 240 min reaction time. The results of the current work show that Mg2Si can be produced through the magnesiothermic reduction of natural quartz with high yield. The obtained Mg2Si can be processed further to produce silane gas as a precursor to high purity Si. The combination of these two processes offers the potential for a more direct and low carbon method to produce Si with high purity

    Magnesiothermic Reduction of Natural Quartz

    No full text
    In the current work, the metallothermic reduction of natural quartz by magnesium has been studied at 1373 K under different reaction conditions, i.e. quartz type, quartz particle size, Mg:SiO2 mole ratio and reaction time. The microstructure of reaction products was studied to illustrate the reaction progression through scanning and transmission electron microscopy techniques. X-ray diffraction analysis with Rietveld phase quantification was used to calculate the change in the amount of phases at different reaction conditions. The results showed that the Mg:SiO2 mole ratio strongly affects reaction mechanism and product characteristics such as phase content and microstructure. At lower Mg:SiO2 mole ratios, the reaction rate is fast at the beginning and the formation of a product layer consisting of different phases such as MgO, Si, Mg2Si, Mg2SiO4 and MgSiO3 around quartz particles limits the Mg diffusion. This phenomenon is more noticeable for larger quartz particle sizes where Mg should diffuse longer distance towards the quartz core to react with it. At higher Mg:SiO2 mole ratios, a significant amount of Si–Mg liquid alloy is formed during reaction where the high mobility of Mg in this liquid phase and cracking of quartz particles result in significantly higher reaction rate. Here the formation of intermediate phases is not significant and the products would be the mixture of MgO, Mg2Si, and either Si or Mg phases

    Magnesiothermic Reduction of Natural Quartz

    Get PDF
    In the current work, the metallothermic reduction of natural quartz by magnesium has been studied at 1373 K under different reaction conditions, i.e. quartz type, quartz particle size, Mg:SiO2 mole ratio and reaction time. The microstructure of reaction products was studied to illustrate the reaction progression through scanning and transmission electron microscopy techniques. X-ray diffraction analysis with Rietveld phase quantification was used to calculate the change in the amount of phases at different reaction conditions. The results showed that the Mg:SiO2 mole ratio strongly affects reaction mechanism and product characteristics such as phase content and microstructure. At lower Mg:SiO2 mole ratios, the reaction rate is fast at the beginning and the formation of a product layer consisting of different phases such as MgO, Si, Mg2Si, Mg2SiO4 and MgSiO3 around quartz particles limits the Mg diffusion. This phenomenon is more noticeable for larger quartz particle sizes where Mg should diffuse longer distance towards the quartz core to react with it. At higher Mg:SiO2 mole ratios, a significant amount of Si–Mg liquid alloy is formed during reaction where the high mobility of Mg in this liquid phase and cracking of quartz particles result in significantly higher reaction rate. Here the formation of intermediate phases is not significant and the products would be the mixture of MgO, Mg2Si, and either Si or Mg phases.publishedVersio

    Magnesiothermic Reduction of Natural Quartz

    No full text
    In the current work, the metallothermic reduction of natural quartz by magnesium has been studied at 1373 K under different reaction conditions, i.e. quartz type, quartz particle size, Mg:SiO2 mole ratio and reaction time. The microstructure of reaction products was studied to illustrate the reaction progression through scanning and transmission electron microscopy techniques. X-ray diffraction analysis with Rietveld phase quantification was used to calculate the change in the amount of phases at different reaction conditions. The results showed that the Mg:SiO2 mole ratio strongly affects reaction mechanism and product characteristics such as phase content and microstructure. At lower Mg:SiO2 mole ratios, the reaction rate is fast at the beginning and the formation of a product layer consisting of different phases such as MgO, Si, Mg2Si, Mg2SiO4 and MgSiO3 around quartz particles limits the Mg diffusion. This phenomenon is more noticeable for larger quartz particle sizes where Mg should diffuse longer distance towards the quartz core to react with it. At higher Mg:SiO2 mole ratios, a significant amount of Si–Mg liquid alloy is formed during reaction where the high mobility of Mg in this liquid phase and cracking of quartz particles result in significantly higher reaction rate. Here the formation of intermediate phases is not significant and the products would be the mixture of MgO, Mg2Si, and either Si or Mg phases
    corecore