102 research outputs found
Antimycin A treatment decreases respiratory internal rotenone-insensitive NADH oxidation capacity in potato leaves
BACKGROUND: The plant respiratory chain contains several energy-dissipating enzymes, these being type II NAD(P)H dehydrogenases and the alternative oxidase, not present in mammals. The physiological functions of type II NAD(P)H dehydrogenases are largely unclear and little is known about their responses to stress. In this investigation, potato plants (Solanum tuberosum L., cv. Desiree) were sprayed with antimycin A, an inhibitor of the cytochrome pathway. Enzyme capacities of NAD(P)H dehydrogenases (EC 1.6.5.3) and the alternative oxidase were then analysed in isolated leaf mitochondria. RESULTS: We report a specific decrease in internal rotenone-insensitive NADH dehydrogenase capacity in mitochondria from antimycin A-treated leaves. External NADPH dehydrogenase and alternative oxidase capacities remained unaffected by the treatment. Western blotting revealed no change in protein abundance for two characterised NAD(P)H dehydrogenase homologues, NDA1 and NDB1, nor for two subunits of complex I. The alternative oxidase was at most only slightly increased. Transcript levels of nda1, as well as an expressed sequence tag derived from a previously uninvestigated closely related potato homologue, remained unchanged by the treatment. As compared to the daily rhythm-regulated nda1, the novel homologue displayed steady transcript levels over the time investigated. CONCLUSIONS: The internal rotenone-insensitive NADH oxidation decreases after antimycin A treatment of potato leaves. However, the decrease is not due to changes in expression of known nda genes. One consequence of the lower NADH dehydrogenase capacity may be a stabilisation of the respiratory chain reduction level, should the overall capacity of the cytochrome and the alternative pathway be restricted
Metabolomic evaluation of pulsed electric field-induced stress on potato tissue
Metabolite profiling was used to characterize
stress responses of potato tissue subjected to reversible
electroporation, providing insights on how potato tissue
responds to a physical stimulus such as pulsed electric
fields (PEF), which is an artificial stress. Wounded potato
tissue was subjected to field strengths ranging from 200 to
400 V/cm, with a single rectangular pulse of 1 ms. Electroporation
was demonstrated by propidium iodide staining of
the cell nucleae. Metabolic profiling of data obtained
through GC/TOF-MS and UPLC/TOF-MS complemented
with orthogonal projections to latent structures clustering
analysis showed that 24 h after the application of PEF,
potato metabolism shows PEF-specific responses characterized
by the changes in the hexose pool that may involve
starch and ascorbic acid degradation.The Royal Physiographic Society in Lund, SwedenPortuguese Foundation of Science (FCT), PortugalDepartment of Cell and Organism Biology, Lund Universit
Pulsed electric field-induced cell permeabilisation of potato tissue lead to sustained metabolic changes
Metabolite profiling was used to characterize stress responses of potato tissue subjected to reversible electroporation, providing insights on how potato tissue responds to a physical stimulus such as pulsed electric fields (PEF), which is an artificial stress. Wounded potato tissue was subjected to field strengths ranging from 200 to 400 V/cm, with a single rectangular pulse of 1 ms. Electroporation was demonstrated by propidium iodide staining of the cells nucleae. Metabolic profiling of data obtained through GC/TOF-MS complemented with orthogonal projections to latent structures (OPLS) clustering analysis showed that 24 h after the application of PEF, potato metabolism shows PEF-specific responses characterized by the changes in the hexose pool that may involve starch and ascorbic acid degradation
Trichoderma viride cellulase induces resistance to the antibiotic pore-forming peptide alamethicin associated with changes in the plasma membrane lipid composition of tobacco BY-2 cells
<p>Abstract</p> <p>Background</p> <p>Alamethicin is a membrane-active peptide isolated from the beneficial root-colonising fungus <it>Trichoderma viride</it>. This peptide can insert into membranes to form voltage-dependent pores. We have previously shown that alamethicin efficiently permeabilises the plasma membrane, mitochondria and plastids of cultured plant cells. In the present investigation, tobacco cells (<it>Nicotiana tabacum </it>L. cv Bright Yellow-2) were pre-treated with elicitors of defence responses to study whether this would affect permeabilisation.</p> <p>Results</p> <p>Oxygen consumption experiments showed that added cellulase, already upon a limited cell wall digestion, induced a cellular resistance to alamethicin permeabilisation. This effect could not be elicited by xylanase or bacterial elicitors such as flg22 or elf18. The induction of alamethicin resistance was independent of novel protein synthesis. Also, the permeabilisation was unaffected by the membrane-depolarising agent FCCP. As judged by lipid analyses, isolated plasma membranes from cellulase-pretreated tobacco cells contained less negatively charged phospholipids (PS and PI), yet higher ratios of membrane lipid fatty acid to sterol and to protein, as compared to control membranes.</p> <p>Conclusion</p> <p>We suggest that altered membrane lipid composition as induced by cellulase activity may render the cells resistant to alamethicin. This induced resistance could reflect a natural process where the plant cells alter their sensitivity to membrane pore-forming agents secreted by <it>Trichoderma spp</it>. to attack other microorganisms, and thus adding to the beneficial effect that <it>Trichoderma </it>has for plant root growth. Furthermore, our data extends previous reports on artificial membranes on the importance of lipid packing and charge for alamethicin permeabilisation to <it>in vivo </it>conditions.</p
Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation
A major therapeutic challenge is how to replace bone once it is lost. Bone loss is a characteristic of chronic inflammatory and degenerative diseases such as rheumatoid arthritis and osteoporosis. Cells and cytokines of the immune system are known to regulate bone turnover by controlling the differentiation and activity of osteoclasts, the bone resorbing cells. However, less is known about the regulation of osteoblasts (OB), the bone forming cells. This study aimed to investigate whether immune cells also regulate OB differentiation. Using in vitro cell cultures of human bone marrow-derived mesenchymal stem cells (MSC), it was shown that monocytes/macrophages potently induced MSC differentiation into OBs. This was evident by increased alkaline phosphatase (ALP) after 7 days and the formation of mineralised bone nodules at 21 days. This monocyte-induced osteogenic effect was mediated by cell contact with MSCs leading to the production of soluble factor(s) by the monocytes. As a consequence of these interactions we observed a rapid activation of STAT3 in the MSCs. Gene profiling of STAT3 constitutively active (STAT3C) infected MSCs using Illumina whole human genome arrays showed that Runx2 and ALP were up-regulated whilst DKK1 was down-regulated in response to STAT3 signalling. STAT3C also led to the up-regulation of the oncostatin M (OSM) and LIF receptors. In the co-cultures, OSM that was produced by monocytes activated STAT3 in MSCs, and neutralising antibodies to OSM reduced ALP by 50%. These data indicate that OSM, in conjunction with other mediators, can drive MSC differentiation into OB. This study establishes a role for monocyte/macrophages as critical regulators of osteogenic differentiation via OSM production and the induction of STAT3 signalling in MSCs. Inducing the local activation of STAT3 in bone cells may be a valuable tool to increase bone formation in osteoporosis and arthritis, and in localised bone remodelling during fracture repair
A recipe for simulating the interannual variability of the Asian summer monsoon and its relation with ENSO
Author Posting. Β© The Authors, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Climate Dynamics 28 (2007): 441-460, doi: 10.1007/s00382-006-0190-0.This study investigates how accurately the interannual variability over the Indian
Ocean basin and the relationship between the Indian summer monsoon and the
El Nino Southern Oscillation (ENSO) can be simulated by different modelling
strategies. With a hierarchy of models, from an atmospherical general circulation
model (AGCM) forced by observed SST, to a coupled model with the ocean
component limited to the tropical Pacific and Indian Oceans, the role of heat
fluxes and of interactive coupling is analyzed. Whenever sea surface temperature
anomalies in the Indian basin are created by the coupled model, the inverse relationship
between the ENSO index and the Indian summer monsoon rainfall is
recovered, and it is preserved if the atmospherical model is forced by the SSTs
created by the coupled model. If the ocean model domain is limited to the Indian
Ocean, changes in the Walker circulation over the Pacific during El Nino years
induce a decrease of rainfall over the Indian subcontinent. However the observed
correlation between the ENSO and the Indian Ocean Zonal Mode (IOZM) is
not properly modelled and the two indices are not significantly correlated, independently
on season. Whenever the ocean domain extends to the Pacific, and
ENSO can impact both the atmospheric circulation and the ocean subsurface in
the equatorial Eastern Indian Ocean, modelled precipitation patterns associated
both to ENSO and to the IOZM closely resemble the observations.The experiments described were performed as a contribution to the ENSEMBLES
project funded by the European Commissionβs 6th Framework Programme, contract
number GOCE-CT-2003-505539
NADP-Utilizing Enzymes in the Matrix of Plant Mitochondria
Purified potato tuber (Solanum tuberosum L. cv Bintie) mitochondria contain soluble, highly latent NAD(+)- and NADP(+)-isocitrate dehydrogenases, NAD(+)- and NADP(+)-malate dehydrogenases, as well as an NADPH-specific glutathione reductase (160, 25, 7200, 160, and 16 nanomoles NAD(P)H per minute and milligram protein, respectively). The two isocitrate dehydrogenase activities, but not the two malate dehydrogenase activities, could be separated by ammonium sulfate precipitation. Thus, the NADP(+)-isocitrate dehydrogenase activity is due to a separate matrix enzyme, whereas the NADP(+)-malate dehydrogenase activity is probably due to unspecificity of the NAD(+)-malate dehydrogenase. NADP(+)-specific isocitrate dehydrogenase had much lower K(m)s for NADP(+) and isocitrate (5.1 and 10.7 micromolar, respectively) than the NAD(+)-specific enzyme (101 micromolar for NAD(+) and 184 micromolar for isocitrate). A broad activity optimum at pH 7.4 to 9.0 was found for the NADP(+)-specific isocitrate dehydrogenase whereas the NAD(+)-specific enzyme had a sharp optimum at pH 7.8. Externally added NADP(+) stimulated both isocitrate and malate oxidation by intact mitochondria under conditions where external NADPH oxidation was inhibited. This shows that (a) NADP(+) is taken up by the mitochondria across the inner membrane and into the matrix, and (b) NADP(+)-reducing activities of malate dehydrogenase and the NADP(+)-specific isocitrate dehydrogenase in the matrix can contribute to electron transport in intact plant mitochondria. The physiological relevance of mitochondrial NADP(H) and soluble NADP(H)-consuming enzymes is discussed in relation to other known mitochondrial NADP(H)-utilizing enzymes
The role of NADP in the mitochondrial matrix
Many diverse metabolic processes are coupled to the turnover of the coenzyme NADP in the matrix of plant mitochondria. NADPH can be produced via the NADP-specific isocitrate dehydrogenase as well as via enzymes like NAD-malic enzyme, NAD-malate dehydrogenase and Ξ1-pyrroline-5-carboxylate dehydrogenase. Although not NADP-specific, the latter enzymes can all catalyse the reduction of NADP+ at appreciable rates. The NADPH produced can be used in folate metabolism, by glutathione reductase for protection against oxidative damage, and by thioredoxin reductase in the (putative) regulation of metabolic pathways via thiol-group reduction. It can also be oxidized by the respiratory chain via a Ca2+-dependent NADPH dehydrogenase - this is a potential way of regulating the NADP reduction level in the matrix and thus, indirectly, the other processes. It is now possible to present an integrated picture of NADP turnover inside the mitochondrion
- β¦