3 research outputs found

    Hydration of Atmospheric Molecular Clusters III : Procedure for Efficient Free Energy Surface Exploration of Large Hydrated Clusters

    Get PDF
    Sampling the shallow free energy surface of hydrated atmospheric molecular clusters is a significant challenge. Using computational methods, we present an efficient approach to obtain minimum free energy structures for large hydrated clusters of atmospheric relevance. We study clusters consisting of two to four sulfuric acid (sa) molecules and hydrate them with up to five water (w) molecules. The structures of the "dry" clusters are obtained using the ABCluster program to yield a large pool of low-lying conformer minima with respect to free energy. The conformers (up to ten) lowest in free energy are then hydrated using our recently developed systematic hydrate sampling technique. Using this approach, we identify a total of 1145 unique (sa)(2-4)(w)(1-5) cluster structures. The cluster geometries and thermochemical parameters are calculated at the omega B97X-D/6-31++G(d,p) level of theory, at 298.15 K and 1 atm. The single-point energy of the most stable clusters is calculated using a high-level DLPNO-CCSD(T-0)/aug-cc-pVTZ method. Using the thermochemical data, we calculate the equilibrium hydrate distribution of the clusters under atmospheric conditions and find that the larger (sa)(3) and (sa)(4) clusters are significantly more hydrated than the smaller (sa)(2) cluster or the sulfuric acid (sa)(1) molecule. These findings indicate that more than five water molecules might be required to fully saturate the sulfuric acid clusters with water under atmospheric conditions. The presented methodology gives modelers a tool to take the effect of water explicitly into account in atmospheric particle formation models based on quantum chemistry.Peer reviewe

    Contribution of Methanesulfonic Acid to the Formation of Molecular Clusters in the Marine Atmosphere

    No full text
    Because of the lack of long-term measurements, new particle formation (NPF) in the marine atmosphere remains puzzling. Using quantum chemical methods, this study elucidates the cluster formation and further growth of sulfuric acid–methane­sulfonic acid–dimethylamine (SA-MSA-DMA) clusters, relevant to NPF in the marine atmosphere. The cluster structures and thermochemical parameters of (SA)n(MSA)m(DMA)l (n + m ≤ 4 and l ≤ 4) systems are calculated using density functional theory at the ωB97X-D/6-31++G(d,p) level of theory, and the single-point energies are calculated using high-level DLPNO-CCSD(T0)/aug-cc-pVTZ calculations. The calculated thermochemistry is used as input to the Atmospheric Cluster Dynamics Code (ACDC) to gain insight into the cluster dynamics. At ambient conditions (298.15 K, 1 atm), we find that the distribution of outgrowing clusters primarily consists of SA and DMA, with a minor contribution from the mixed SA–MSA–DMA clusters. At lower temperature (278.15 K, 1 atm) the distribution broadens, and clusters containing one or more MSA molecules emerge. These findings show that in the cold marine atmosphere MSA likely participates in atmospheric NPF
    corecore