20 research outputs found

    Nuclear Shell Structure and Chaotic Dynamics in Hexadecapole Deformation

    Get PDF
    The effect of an axially symmetric hexadecapole term is investigated in a strongly deformed quadrupole potential. While the system is nonintegrable and shows significant chaotic behaviour classically, the quantum mechanical treatment not only produces a general smoothing effect with regard to chaos but even yields a pronounced shell structure at certain hexadecapole strength parameter values for oblate and prolate deformation.Comment: RevTeX + 4 figs. available from the authors, to appear in Phys.Rev.

    Interplay between Zeeman interaction and spin-orbit coupling in a two-dimensional semiconductor system

    Full text link
    We analyse the interplay between Dresselhaus, Bychkov-Rashba, and Zeeman interactions in a two-dimensional semiconductor quantum system under the action of a magnetic field. When a vertical magnetic field is considered, we predict that the interplay results in an effective cyclotron frequency that depends on a spin-dependent contribution. For in-plane magnetic fields, we found that the interplay induces an anisotropic effective gyromagnetic factor that depends on the orientation of the applied field as well as on the orientation of the electron momentum.Comment: 5 page

    Symmetry breaking and the random-phase approximation in small quantum dots

    Full text link
    The random-phase approximation has been used to compute the properties of parabolic two-dimensional quantum dots beyond the mean-field approximation. Special emphasis is put on the ground state correlation energy, the symmetry restoration and the role of the spurious modes within the random-phase approximation. A systematics with the Coulombic interaction strength is presented for the 2-electron dot, while for the 6- and 12-electron dots selected cases are discussed. The validity of the random-phase approximation is assessed by comparison with available exact results.Comment: 9 pages, 4 embedded + 6 gif Figs. Published versio

    Roto-vibrational spectrum and Wigner crystallization in two-electron parabolic quantum dots

    Full text link
    We provide a quantitative determination of the crystallization onset for two electrons in a parabolic two-dimensional confinement. This system is shown to be well described by a roto-vibrational model, Wigner crystallization occurring when the rotational motion gets decoupled from the vibrational one. The Wigner molecule thus formed is characterized by its moment of inertia and by the corresponding sequence of rotational excited states. The role of a vertical magnetic field is also considered. Additional support to the analysis is given by the Hartree-Fock phase diagram for the ground state and by the random-phase approximation for the moment of inertia and vibron excitations.Comment: 10 pages, 8 figures, replaced by the published versio

    Conformal and Affine Hamiltonian Dynamics of General Relativity

    Full text link
    The Hamiltonian approach to the General Relativity is formulated as a joint nonlinear realization of conformal and affine symmetries by means of the Dirac scalar dilaton and the Maurer-Cartan forms. The dominance of the Casimir vacuum energy of physical fields provides a good description of the type Ia supernova luminosity distance--redshift relation. Introducing the uncertainty principle at the Planck's epoch within our model, we obtain the hierarchy of the Universe energy scales, which is supported by the observational data. We found that the invariance of the Maurer-Cartan forms with respect to the general coordinate transformation yields a single-component strong gravitational waves. The Hamiltonian dynamics of the model describes the effect of an intensive vacuum creation of gravitons and the minimal coupling scalar (Higgs) bosons in the Early Universe.Comment: 37 pages, version submitted to Gen. Rel. Gra
    corecore