2,209 research outputs found

    A procedure to analyze nonlinear density waves in Saturn's rings using several occultation profiles

    Full text link
    Cassini radio science experiments have provided multiple occultation optical depth profiles of Saturn's rings that can be used in combination to analyze density waves. This paper establishes an accurate procedure of inversion of the wave profiles to reconstruct the wave kinematic parameters as a function of semi-major axis, in the nonlinear regime. This procedure is achieved from simulated data in the presence of realistic noise perturbations, to control the reconstruction error. By way of illustration we have applied our procedure to the Mimas 5:3 density wave. We were able to recover precisely the kinematic parameters from the radio experiment occultation data in most of the propagation region; a preliminary analysis of the pressure-corrected dispersion allowed us to determine new but still uncertain values for the opacity (K≃0.02K\simeq 0.02 cm2^2/g) and velocity dispersion of (co≃0.6c_o\simeq 0.6 cm/s) in the wave region. Our procedure constitutes the first step in our planned analysis of the density waves of Saturn's rings. It is very accurate and efficient in the far-wave region. However, improvements are required within the first wavelength. The ways in which this method can be used to establish diagnostics of ring physics are outlined.Comment: 50 pages,13 figures, 2 tables. Published in Icarus

    Models for the Observable System Parameters of Ultraluminous X-ray Sources

    Full text link
    We investigate the evolution of the properties of model populations of ultraluminous X-ray sources (ULXs) consisting of a black-hole accretor in a binary with a donor star. We have computed models corresponding to three different populations of black-hole binaries; two invoke stellar-mass (~10 Msun) black hole accretors, and the third utilizes intermediate-mass (~1000 Msun) black holes (IMBHs). For each of the three populations, we computed 30,000 binary evolution sequences using a full Henyey stellar evolution code. The optical flux from the model ULXs includes contributions from the accretion disk, due to x-ray irradiation as well as intrinsic viscous heating, and that due to the donor star. We present "probability images" for the ULX systems in planes of color-magnitude, orbital period vs. X-ray luminosity, and luminosity vs. evolution time. Estimates of the numbers of ULXs in a typical galaxy as functions of time and of X-ray luminosity are also presented. Our model CMDs are compared with six ULX counterparts that have been discussed in the literature. Overall, the observed systems seem more closely related to model systems with very high-mass donors (> ~25 Msun) in binaries with IMBH accretors. However, significant difficulties remain with both the IMBH and stellar-mass black hole models.Comment: 15 pages, 8 figures, submitted to ApJ on Oct 05, 200

    Absorption in the fractional quantum Hall regime: trion dichroism and spin polarization

    Full text link
    We present measurements of optical interband absorption in the fractional quantum Hall regime in a GaAs quantum well in the range 0 < nu < 1. We investigate the mechanism of singlet trion absorption, and show that its circular dichroism can be used as a probe of the spin polarization of the ground state of the two-dimensional electron system (2DES). We find that at nu = 1/3 the 2DES is fully spin-polarized. Increasing the filling factor results in a gradual depolarization, with a sharp minimum in the dichroism near nu = 2/3. We find that in the range 0.5 < nu < 0.85 the 2DES remains partially polarized for the broad range of magnetic fields from 2.75 to 11 Tesla. This is consistent with the presence of a mixture of polarized and depolarized regions.Comment: 4 pages, 4 figures (Fig 4 is in color

    Spatio-Temporal Pattern of Saturn's Equatorial Oscillation

    Get PDF
    Recent ground-based and Cassini CIRS thermal-infrared data have characterized the spatial and temporal characteristics of an equatorial oscillation in the middle atmosphere of Saturn above the 100-mbar level. The CIRS data [I] indicated a pattern of warm and cold anomalies near the equator, stacked vertically in alternating fashion. The ground-based observations s2, although not having the altitude range or vertical resolution of the CIRS observations, covered several years and indicated an oscillation cycle of approx.15 years, roughly half of Saturn's year. In Earth's middle atmosphere, both the quasi-biennial (approx.26 months) and semi-annual equatorial oscillations have been extensively observed and studied (see e.g., [3]), These exhibit a pattern of alternating warmer and cooler zonal-mean temperatures with altitude, relative to those at subtropical latitudes. Consistent with the thermal wind equation, this is also associated with an alternating pattern of westerly and easterly zonal winds. Moreover, the pattern of winds and temperatures descends with time. Momentum deposition by damped vertically propagating waves is thought to play a key role m forcing both types of oscillation, and it can plausibly account for the descent. Here we report the direct observation of this descent in Saturn's equatorial atmosphere from Cassini radio occultation soundings in 2005 and 2009. The retrieved temperatures are consistent with a descent of 0.7 x the pressure scale height. The descent rate is related to the magnitude of the wave forcing, radiative damping, and induced meridional circulations. We discuss possible implications

    Magnetically Torqued Thin Accretion Disks

    Full text link
    We compute the properties of a geometrically thin, steady accretion disk surrounding a central rotating, magnetized star. The magnetosphere is assumed to entrain the disk over a wide range of radii. The model is simplified in that we adopt two (alternate) ad hoc, but plausible, expressions for the azimuthal component of the magnetic field as a function of radial distance. We find a solution for the angular velocity profile tending to corotation close to the central star, and smoothly matching a Keplerian curve at a radius where the viscous stress vanishes. The value of this ''transition'' radius is nearly the same for both of our adopted B-field models. We then solve analytically for the torques on the central star and for the disk luminosity due to gravity and magnetic torques. When expressed in a dimensionless form, the resulting quantities depend on one parameter alone, the ratio of the transition radius to the corotation radius. For rapid rotators, the accretion disk may be powered mostly by spin-down of the central star. These results are independent of the viscosity prescription in the disk. We also solve for the disk structure for the special case of an optically thick alpha disk. Our results are applicable to a range of astrophysical systems including accreting neutron stars, intermediate polar cataclysmic variables, and T Tauri systems.Comment: 9 sharper figs, updated reference

    Can Vertical Profiles of Tropospheric Methane on Titan Be Derived from Radio-Occultation Soundings?

    Get PDF
    The intensity of the received signal at Earth in the radio occultations of Titan is attenuated both by refractive defocusing and pressure-induced absorption from N2-N2 and CH4-N2 pairs. Because the absorption strength is different for the two sets of pairs, matching the retrieved absorptivity profile can in principle yield the vertical variation in gaseous methane in the troposphere. There are two factors that make this difficult. The first is the propagation of noise in the phase and amplitude of the received signal in the absorption retrieval. The phase data is first inverted to retrieve vertical profiles of refractivity, from which the refractive defocusing is calculated. This is then subtracted from the observed. intensity attenuation of the received signal to generate a profile of atmospheric absorption. The second problem is the uncertainty in the pressure-induced absorption coefficients. Laboratory data at radio wavelengths is only available near room temperature (see, e.g., [1] for N2-N2), and the extrapolation to the low temperatures in Titan's troposphere is not well established. Ab initio calculations by Borysow et al. [2, 3] provide absorption coefficients at low temperatures and long wavelengths, but their accuracy has come into question. We present examples from Cassini radio occultations of Titan to illustrate the difficulties. For methane mole fractions in the lower troposphere comparable to that inferred from the Huygens probe (approximately 0.05), it will be difficult to separate the contributions of N2-N2 collisions from those of N2-CH4, collisions to the retrieved absorption. However, higher concentrations of CH4 and/or a higher signal-to-noise ratio from a future uplink experiment could result in a successful separation of the two components. However, key to this are highly accurate estimates of the absorption from a combination of laboratory measurements at love temperatures and long wavelengths, and possibly improved theoretical calculations

    The Effects of Binary Evolution on the Dynamics of Core Collapse and Neutron-Star Kicks

    Full text link
    We systematically examine how the presence in a binary affects the final core structure of a massive star and its consequences for the subsequent supernova explosion. Interactions with a companion star may change the final rate of rotation, the size of the helium core, the strength of carbon burning and the final iron core mass. Stars with initial masses larger than \sim 11\Ms that experiece core collapse will generally have smaller iron cores at the time of the explosion if they lost their envelopes due to a previous binary interaction. Stars below \sim 11\Ms, on the other hand, can end up with larger helium and metal cores if they have a close companion, since the second dredge-up phase which reduces the helium core mass dramatically in single stars does not occur once the hydrogen envelope is lost. We find that the initially more massive stars in binary systems with masses in the range 8 - 11\Ms are likely to undergo an electron-capture supernova, while single stars in the same mass range would end as ONeMg white dwarfs. We suggest that the core collapse in an electron-capture supernova (and possibly in the case of relatively small iron cores) leads to a prompt explosion rather than a delayed neutrino-driven explosion and that this naturally produces neutron stars with low-velocity kicks. This leads to a dichotomous distribution of neutron star kicks, as inferred previously, where neutron stars in relatively close binaries attain low kick velocities. We illustrate the consequences of such a dichotomous kick scenario using binary population synthesis simulations and discuss its implications. This scenario has also important consequences for the minimum initial mass of a massive star that becomes a neutron star. (Abbreviated.)Comment: 8 pages, 3 figures, submitted to ApJ, updated versio

    Fast X-ray Transients and Their Connection to Gamma-Ray Bursts

    Full text link
    Fast X-ray transients (FXTs) with timescales from seconds to hours have been seen by numerous space instruments. We have assembled archival data from Ariel-5, HEAO-1 (A-1 and A-2), WATCH, ROSAT, and Einstein to produce a global fluence-frequency relationship for these events. Fitting the log N-log S distribution over several orders of magnitude to simple power law we find a slope of -1.0. The sources of FXTs are undoubtedly heterogeneous, the -1 power law is an approximate result of the summation of these multiple sources. Two major contributions come from gamma-ray bursts and stellar flares. Extrapolating from the BATSE catalog of GRBs, we find that the fraction of X-ray flashes that can be the X-ray counterparts of gamma-ray bursts is a function of fluence. Certainly most FXTs are not counterparts of standard gamma-ray bursts. The fraction of FXTs from non-GRB sources, such as magnetic stars, is greatest for the faintest FXTs. Our understanding of the FXT phenomenon remains limited and would greatly benefit from a large, homogeneous data set, which requires a wide-field, sensitive instrument.Comment: 36 pages, 8 figure
    • …
    corecore