2,042 research outputs found
Velocity fluctuations and hydrodynamic diffusion in sedimentation
We study non-equilibrium velocity fluctuations in a model for the
sedimentation of non-Brownian particles experiencing long-range hydrodynamic
interactions. The complex behavior of these fluctuations, the outcome of the
collective dynamics of the particles, exhibits many of the features observed in
sedimentation experiments. In addition, our model predicts a final relaxation
to an anisotropic (hydrodynamic) diffusive state that could be observed in
experiments performed over longer time ranges.Comment: 7 pages, 5 EPS figures, EPL styl
Thermodynamics predicts how confinement modifies hard-sphere dynamics
We study how confining the equilibrium hard-sphere fluid to restrictive one-
and two-dimensional channels with smooth interacting walls modifies its
structure, dynamics, and entropy using molecular dynamics and transition-matrix
Monte Carlo simulations. Although confinement strongly affects local
structuring, the relationships between self-diffusivity, excess entropy, and
average fluid density are, to an excellent approximation, independent of
channel width or particle-wall interactions. Thus, thermodynamics can be used
to predict how confinement impacts dynamics.Comment: 4 pages, 4 figure
Free Thermal Convection Driven by Nonlocal Effects
We report and explain a convective phenomenon observed in molecular dynamics
simulations that cannot be classified either as a hydrodynamics instability nor
as a macroscopically forced convection. Two complementary arguments show that
the velocity field by a thermalizing wall is proportional to the ratio between
the heat flux and the pressure. This prediction is quantitatively corroborated
by our simulations.Comment: RevTex, figures is eps, submited for publicatio
Stratified horizontal flow in vertically vibrated granular layers
A layer of granular material on a vertically vibrating sawtooth-shaped base
exhibits horizontal flow whose speed and direction depend on the parameters
specifying the system in a complex manner. Discrete-particle simulations reveal
that the induced flow rate varies with height within the granular layer and
oppositely directed flows can occur at different levels. The behavior of the
overall flow is readily understood once this novel feature is taken into
account.Comment: 4 pages, 6 figures, submitte
Numerical model of the temperature dependence of the up-conversion efficiency of fluoride crystals codoped with ytterbium and thulium
We review the role of temperature on the up-conversion efficiency of materials that are good candidates to be used as the three primary-color emitters in optically written displays. A rate equation model is given for the blue emitting material that includes temperature-dependent coefficients for energy transfer and cross relaxation. Increased temperature leads to decreased up-conversion efficiency. The effect of pumping conditions on heating the emitting material is illustrated and explained. Steps to reduce the temperature rise when pumping up-conversion materials are described
Magnetic friction due to vortex fluctuation
We use Monte Carlo and molecular dynamics simulation to study a magnetic
tip-sample interaction. Our interest is to understand the mechanism of heat
dissipation when the forces involved in the system are magnetic in essence. We
consider a magnetic crystalline substrate composed of several layers
interacting magnetically with a tip. The set is put thermally in equilibrium at
temperature T by using a numerical Monte Carlo technique. By using that
configuration we study its dynamical evolution by integrating numerically the
equations of motion. Our results suggests that the heat dissipation in this
system is closed related to the appearing of vortices in the sample.Comment: 6 pages, 41 figure
Polyelectrolyte stars in planar confinement
We employ monomer-resolved Molecular Dynamics simulations and theoretical
considerations to analyze the conformations of multiarm polyelectrolyte stars
close to planar, uncharged walls. We identify three mechanisms that contribute
to the emergence of a repulsive star-wall force, namely: the confinement of the
counterions that are trapped in the star interior, the increase in
electrostatic energy due to confinement as well as a novel mechanism arising
from the compression of the stiff polyelectrolyte rods approaching the wall.
The latter is not present in the case of interaction between two
polyelectrolyte stars and is a direct consequence of the impenetrable character
of the planar wall.Comment: 34 pages, 8 figures. Revised version of the manuscript. To appear in
J. Chem. Phys. May, 200
Soft disks in a narrow channel
The pressure components of "soft" disks in a two dimensional narrow channel
are analyzed in the dilute gas regime using the Mayer cluster expansion and
molecular dynamics. Channels with either periodic or reflecting boundaries are
considered. It is found that when the two-body potential, u(r), is singular at
some distance r_0, the dependence of the pressure components on the channel
width exhibits a singularity at one or more channel widths which are simply
related to r_0. In channels with periodic boundary conditions and for
potentials which are discontinuous at r_0, the transverse and longitudinal
pressure components exhibit a 1/2 and 3/2 singularity, respectively. Continuous
potentials with a power law singularity result in weaker singularities of the
pressure components. In channels with reflecting boundary conditions the
singularities are found to be weaker than those corresponding to periodic
boundaries
Using the fractional interaction law to model the impact dynamics in arbitrary form of multiparticle collisions
Using the molecular dynamics method, we examine a discrete deterministic
model for the motion of spherical particles in three-dimensional space. The
model takes into account multiparticle collisions in arbitrary forms. Using
fractional calculus we proposed an expression for the repulsive force, which is
the so called fractional interaction law. We then illustrate and discuss how to
control (correlate) the energy dissipation and the collisional time for an
individual article within multiparticle collisions. In the multiparticle
collisions we included the friction mechanism needed for the transition from
coupled torsion-sliding friction through rolling friction to static friction.
Analysing simple simulations we found that in the strong repulsive state binary
collisions dominate. However, within multiparticle collisions weak repulsion is
observed to be much stronger. The presented numerical results can be used to
realistically model the impact dynamics of an individual particle in a group of
colliding particles.Comment: 17 pages, 8 figures, 1 table; In review process of Physical Review
Is there a reentrant glass in binary mixtures?
By employing computer simulations for a model binary mixture, we show that a
reentrant glass transition upon adding a second component only occurs if the
ratio of the short-time mobilities between the glass-forming component
and the additive is sufficiently small. For , there is no
reentrant glass, even if the size asymmetry between the two components is
large, in accordance with two-component mode coupling theory. For , on the other hand, the reentrant glass is observed and reproduced only by
an effective one-component mode coupling theory.Comment: 4 pages, 3 figure
- âŠ