2,042 research outputs found

    Velocity fluctuations and hydrodynamic diffusion in sedimentation

    Get PDF
    We study non-equilibrium velocity fluctuations in a model for the sedimentation of non-Brownian particles experiencing long-range hydrodynamic interactions. The complex behavior of these fluctuations, the outcome of the collective dynamics of the particles, exhibits many of the features observed in sedimentation experiments. In addition, our model predicts a final relaxation to an anisotropic (hydrodynamic) diffusive state that could be observed in experiments performed over longer time ranges.Comment: 7 pages, 5 EPS figures, EPL styl

    Thermodynamics predicts how confinement modifies hard-sphere dynamics

    Full text link
    We study how confining the equilibrium hard-sphere fluid to restrictive one- and two-dimensional channels with smooth interacting walls modifies its structure, dynamics, and entropy using molecular dynamics and transition-matrix Monte Carlo simulations. Although confinement strongly affects local structuring, the relationships between self-diffusivity, excess entropy, and average fluid density are, to an excellent approximation, independent of channel width or particle-wall interactions. Thus, thermodynamics can be used to predict how confinement impacts dynamics.Comment: 4 pages, 4 figure

    Free Thermal Convection Driven by Nonlocal Effects

    Full text link
    We report and explain a convective phenomenon observed in molecular dynamics simulations that cannot be classified either as a hydrodynamics instability nor as a macroscopically forced convection. Two complementary arguments show that the velocity field by a thermalizing wall is proportional to the ratio between the heat flux and the pressure. This prediction is quantitatively corroborated by our simulations.Comment: RevTex, figures is eps, submited for publicatio

    Stratified horizontal flow in vertically vibrated granular layers

    Full text link
    A layer of granular material on a vertically vibrating sawtooth-shaped base exhibits horizontal flow whose speed and direction depend on the parameters specifying the system in a complex manner. Discrete-particle simulations reveal that the induced flow rate varies with height within the granular layer and oppositely directed flows can occur at different levels. The behavior of the overall flow is readily understood once this novel feature is taken into account.Comment: 4 pages, 6 figures, submitte

    Numerical model of the temperature dependence of the up-conversion efficiency of fluoride crystals codoped with ytterbium and thulium

    Get PDF
    We review the role of temperature on the up-conversion efficiency of materials that are good candidates to be used as the three primary-color emitters in optically written displays. A rate equation model is given for the blue emitting material that includes temperature-dependent coefficients for energy transfer and cross relaxation. Increased temperature leads to decreased up-conversion efficiency. The effect of pumping conditions on heating the emitting material is illustrated and explained. Steps to reduce the temperature rise when pumping up-conversion materials are described

    Magnetic friction due to vortex fluctuation

    Full text link
    We use Monte Carlo and molecular dynamics simulation to study a magnetic tip-sample interaction. Our interest is to understand the mechanism of heat dissipation when the forces involved in the system are magnetic in essence. We consider a magnetic crystalline substrate composed of several layers interacting magnetically with a tip. The set is put thermally in equilibrium at temperature T by using a numerical Monte Carlo technique. By using that configuration we study its dynamical evolution by integrating numerically the equations of motion. Our results suggests that the heat dissipation in this system is closed related to the appearing of vortices in the sample.Comment: 6 pages, 41 figure

    Polyelectrolyte stars in planar confinement

    Full text link
    We employ monomer-resolved Molecular Dynamics simulations and theoretical considerations to analyze the conformations of multiarm polyelectrolyte stars close to planar, uncharged walls. We identify three mechanisms that contribute to the emergence of a repulsive star-wall force, namely: the confinement of the counterions that are trapped in the star interior, the increase in electrostatic energy due to confinement as well as a novel mechanism arising from the compression of the stiff polyelectrolyte rods approaching the wall. The latter is not present in the case of interaction between two polyelectrolyte stars and is a direct consequence of the impenetrable character of the planar wall.Comment: 34 pages, 8 figures. Revised version of the manuscript. To appear in J. Chem. Phys. May, 200

    Soft disks in a narrow channel

    Full text link
    The pressure components of "soft" disks in a two dimensional narrow channel are analyzed in the dilute gas regime using the Mayer cluster expansion and molecular dynamics. Channels with either periodic or reflecting boundaries are considered. It is found that when the two-body potential, u(r), is singular at some distance r_0, the dependence of the pressure components on the channel width exhibits a singularity at one or more channel widths which are simply related to r_0. In channels with periodic boundary conditions and for potentials which are discontinuous at r_0, the transverse and longitudinal pressure components exhibit a 1/2 and 3/2 singularity, respectively. Continuous potentials with a power law singularity result in weaker singularities of the pressure components. In channels with reflecting boundary conditions the singularities are found to be weaker than those corresponding to periodic boundaries

    Using the fractional interaction law to model the impact dynamics in arbitrary form of multiparticle collisions

    Full text link
    Using the molecular dynamics method, we examine a discrete deterministic model for the motion of spherical particles in three-dimensional space. The model takes into account multiparticle collisions in arbitrary forms. Using fractional calculus we proposed an expression for the repulsive force, which is the so called fractional interaction law. We then illustrate and discuss how to control (correlate) the energy dissipation and the collisional time for an individual article within multiparticle collisions. In the multiparticle collisions we included the friction mechanism needed for the transition from coupled torsion-sliding friction through rolling friction to static friction. Analysing simple simulations we found that in the strong repulsive state binary collisions dominate. However, within multiparticle collisions weak repulsion is observed to be much stronger. The presented numerical results can be used to realistically model the impact dynamics of an individual particle in a group of colliding particles.Comment: 17 pages, 8 figures, 1 table; In review process of Physical Review

    Is there a reentrant glass in binary mixtures?

    Full text link
    By employing computer simulations for a model binary mixture, we show that a reentrant glass transition upon adding a second component only occurs if the ratio α\alpha of the short-time mobilities between the glass-forming component and the additive is sufficiently small. For α≈1\alpha \approx 1, there is no reentrant glass, even if the size asymmetry between the two components is large, in accordance with two-component mode coupling theory. For αâ‰Ș1\alpha \ll 1, on the other hand, the reentrant glass is observed and reproduced only by an effective one-component mode coupling theory.Comment: 4 pages, 3 figure
    • 

    corecore