97 research outputs found

    Confronting models with data: the challenges of estimating disease spillover

    Get PDF
    For pathogens known to transmit across host species, strategic investment in disease control requires knowledge about where and when spillover transmission is likely. One approach to estimating spillover is to directly correlate observed spillover events with covariates. An alternative is to mechanistically combine information on host density, distribution and pathogen prevalence to predict where and when spillover events are expected to occur. We use several case studies at the wildlife–livestock disease interface to highlight the challenges, and potential solutions, to estimating spatiotemporal variation in spillover risk. Datasets on multiple host species often do not align in space, time or resolution, and may have no estimates of observation error. Linking these datasets requires they be related to a common spatial and temporal resolution and appropriately propagating errors in predictions can be difficult. Hierarchical models are one potential solution, but for fine-resolution predictions at broad spatial scales, many models become computationally challenging. Despite these limitations, the confrontation of mechanistic predictions with observed events is an important avenue for developing a better understanding of pathogen spillover. Systems where data have been collected at all levels in the spillover process are rare, or non-existent, and require investment and sustained effort across disciplines. This article is part of the theme issue ‘Dynamic and integrative approaches to understanding pathogen spillover’

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    From Sea to Sea: Canada's Three Oceans of Biodiversity

    Get PDF
    Evaluating and understanding biodiversity in marine ecosystems are both necessary and challenging for conservation. This paper compiles and summarizes current knowledge of the diversity of marine taxa in Canada's three oceans while recognizing that this compilation is incomplete and will change in the future. That Canada has the longest coastline in the world and incorporates distinctly different biogeographic provinces and ecoregions (e.g., temperate through ice-covered areas) constrains this analysis. The taxonomic groups presented here include microbes, phytoplankton, macroalgae, zooplankton, benthic infauna, fishes, and marine mammals. The minimum number of species or taxa compiled here is 15,988 for the three Canadian oceans. However, this number clearly underestimates in several ways the total number of taxa present. First, there are significant gaps in the published literature. Second, the diversity of many habitats has not been compiled for all taxonomic groups (e.g., intertidal rocky shores, deep sea), and data compilations are based on short-term, directed research programs or longer-term monitoring activities with limited spatial resolution. Third, the biodiversity of large organisms is well known, but this is not true of smaller organisms. Finally, the greatest constraint on this summary is the willingness and capacity of those who collected the data to make it available to those interested in biodiversity meta-analyses. Confirmation of identities and intercomparison of studies are also constrained by the disturbing rate of decline in the number of taxonomists and systematists specializing on marine taxa in Canada. This decline is mostly the result of retirements of current specialists and to a lack of training and employment opportunities for new ones. Considering the difficulties encountered in compiling an overview of biogeographic data and the diversity of species or taxa in Canada's three oceans, this synthesis is intended to serve as a biodiversity baseline for a new program on marine biodiversity, the Canadian Healthy Ocean Network. A major effort needs to be undertaken to establish a complete baseline of Canadian marine biodiversity of all taxonomic groups, especially if we are to understand and conserve this part of Canada's natural heritage

    SEROLOGIC EVIDENCE OF WEST NILE VIRUS EXPOSURE IN NORTH AMERICAN MESOPREDATORS

    Get PDF
    Sera from 936 mammalian mesopredators (Virginia opossums, gray foxes, striped skunks, hooded skunks, raccoons, a bobcat, and a red fox) were collected during 2003 and 2004 in California, Arizona, Texas, Louisiana, Ohio, and Wyoming and screened for flavivirus-specific antibodies by an epitope-blocking enzyme-linked immunosobent assay (blocking ELISA). Serum samples positive for antibodies against flaviviruses were screened for West Nile virus (WNV)– specific antibodies by blocking ELISA and selectively confirmed with plaque-reduction neutralization tests. High prevalence rates were observed in raccoons (45.6%) and striped skunks (62.9%). The high WNV antibody prevalence noted in mesopredators, their peridomestic tendencies, and their overall pervasiveness make these species potentially useful sentinels for monitoring flaviviruses in defined areas

    A long reads-based de-novo assembly of the genome of the Arlee homozygous line reveals chromosomal rearrangements in rainbow trout

    Get PDF
    Currently, there is still a need to improve the contiguity of the rainbow trout reference genome and to use multiple genetic backgrounds that will represent the genetic diversity of this species. The Arlee doubled haploid line was originated from a domesticated hatchery strain that was originally collected from the northern California coast. The Canu pipeline was used to generate the Arlee line genome de-novo assembly from high coverage PacBio long-reads sequence data. The assembly was further improved with Bionano optical maps and Hi-C proximity ligation sequence data to generate 32 major scaffolds corresponding to the karyotype of the Arlee line (2 N = 64). It is composed of 938 scaffolds with N50 of 39.16 Mb and a total length of 2.33 Gb, of which ∼95% was in 32 chromosome sequences with only 438 gaps between contigs and scaffolds. In rainbow trout the haploid chromosome number can vary from 29 to 32. In the Arlee karyotype the haploid chromosome number is 32 because chromosomes Omy04, 14 and 25 are divided into six acrocentric chromosomes. Additional structural variations that were identified in the Arlee genome included the major inversions on chromosomes Omy05 and Omy20 and additional 15 smaller inversions that will require further validation. This is also the first rainbow trout genome assembly that includes a scaffold with the sex-determination gene (sdY) in the chromosome Y sequence. The utility of this genome assembly is shown through the improved annotation of the duplicated genome loci that harbor the IGH genes on chromosomes Omy12 and Omy13.USDA Agricultural Research Service | Ref. 8082-31000-012Agriculture and Food Research Initiative Competitive | Ref. 2015-07185USDA National Institute of Food and Agricultur
    corecore