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For pathogens known to transmit across host species, strategic investment in

disease control requires knowledge about where and when spillover

transmission is likely. One approach to estimating spillover is to directly cor-

relate observed spillover events with covariates. An alternative is to

mechanistically combine information on host density, distribution and patho-

gen prevalence to predict where and when spillover events are expected to

occur. We use several case studies at the wildlife–livestock disease interface

to highlight the challenges, and potential solutions, to estimating spatio-

temporal variation in spillover risk. Datasets on multiple host species often

do not align in space, time or resolution, and may have no estimates of obser-

vation error. Linking these datasets requires they be related to a common

spatial and temporal resolution and appropriately propagating errors in

predictions can be difficult. Hierarchical models are one potential solution,

but for fine-resolution predictions at broad spatial scales, many models

become computationally challenging. Despite these limitations, the confron-

tation of mechanistic predictions with observed events is an important

avenue for developing a better understanding of pathogen spillover. Systems

where data have been collected at all levels in the spillover process are rare, or

non-existent, and require investment and sustained effort across disciplines.

This article is part of the theme issue ‘Dynamic and integrative

approaches to understanding pathogen spillover’.

1. Introduction
Predicting where and when a pathogen will transmit, or spillover, from a

reservoir host to another species is a key issue for managing health risks to

humans, livestock and wildlife [1–3]. Developing a better understanding of

this transmission process would allow for more strategic investment of

resources to disease prevention, by optimizing the allocation of assets to

areas, populations and times of highest spillover risk. Models of disease

spillover come in many different forms—from models of viral evolution

within a host, to Kermack–McKendrick models of disease dynamics over

time in a population, to phenomenological statistical models of disease

emergence events [4,5]. Here, we focus on estimating the spillover dynamics

of pathogens known to transmit across the wildlife–livestock interface. We

describe research challenges and opportunities for mechanistic models to

improve our understanding and prediction of pathogen spillover, and highlight

lessons learned from case studies of brucellosis and avian influenza.

Lloyd-Smith et al. [6] noted how the force of infection from one host species

to another is a function of prevalence in the reservoir (donor host (h1)), contact
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rate between donor and recipient host species (h2) and

probability of infection given contact. Plowright et al. [7] ela-

borated on this idea, noting how the contact rates among host

species depend on spatial distribution and host density as

well as the persistence and movement of the pathogen in

the environment or vectors. These factors can be modelled

as a series of conditional probabilities [7]. Conceptually,

this process is straightforward; however, when trying to

apply this framework to specific systems and datasets, we

have encountered numerous challenges.

Disease models typically focus on the dynamics in either

the donor or recipient host species [6]. More comprehensive

spillover risk assessments will require a synthesis of many

datasets across host species and will vary along a spectrum

of mechanistic and phenomenological approaches. By

phenomenological, we mean approaches that relate the

observed spillover events, z, as the dependent variable to

some linear or nonlinear function of predictor variables,

X, and coefficients b (e.g. [5,8,9]). Alternatively, one could

combine information on host species density, prevalence,

contact rate and infection rates to predict the number of

spillovers, ẑ, [7] even when observed data on spillovers

are rare or non-existent. We refer to the latter approach as

‘mechanistic’. This is imperfect terminology because what

constitutes a mechanism to one researcher may be phenom-

enological to another. In addition, newer statistical

approaches are blurring the differences between mechanis-

tic and statistical models [10,11] and phenomenological

models of spillover may include covariate data on host

and pathogen distributions. Nonetheless, we find this to

be a useful shorthand.

In figure 1, mechanistic approaches attempt to move

from data to inference about spillovers by first going left

to right across each layer (rows) to create spatio-temporal

distributions of host density, pathogen prevalence, trans-

mission and shedding. Those spatio-temporal maps can

then be combined to predict spillover events. Phenomeno-

logical models move directly across the bottom row of

figure 1, using direct observations of spillovers to estimate

risk using covariates (e.g. temperature, precipitation,

habitat type and land-use) that are correlated with host

and pathogen distributions but may not include direct

information on those components. By choosing covariates

that align well with the spatial and temporal resolution

of interest, phenomenological models may avoid some of

the difficulty noted below when direct estimates of host

density and pathogen shedding patterns are required.

A mechanistic approach may be possible when spillover

events are rare or are hard to differentiate from subse-

quent transmission in the recipient host. When spillover

events are common, they can be investigated directly

using either mechanistic or phenomenological models.

Mechanistic models are likely to be constructed at finer

spatio-temporal resolutions, making them more useful to

local landowners and agencies compared to the coarser

resolutions in phenomenological models that are informa-

tive at the regional, or national, level. Both approaches

are important and useful, particularly when they can be

compared to one another, and they are challenged by

similar empirical issues. We focus below on the empirical

issues that we have encountered in several well-studied

wildlife– livestock systems. We briefly describe the

elements of a mechanistic approach to spillover and then

relate this to our case studies. We end with a discussion

of the challenges and potential ways forward in the

empirical estimation of disease spillover.
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Figure 1. Observational data are collected at a variety of spatial and temporal resolutions (e.g. v ¼ month, u ¼ year, d ¼ day of year, q ¼ management units
and l ¼ point locations) that must be related to the regions, r, and times, t, of interest. A mechanistic approach estimates the underlying layers and combines them
together to predict spillover (across rows and then down), while a phenomenological approach uses the spillover data themselves to predict exposures (bottom row)
and relates that to covariates. Black regions represent missing count and density data, while white regions reflect recipient host densities that are zero. Movement
data (here depicted as from three individuals) may be missing from some regions and years. Disease testing data may be collected as point locations but need to be
smoothed over space or time. Pathogen shedding may vary seasonally either owing to the population dynamics of vectors or owing to within-year variation in
disease prevalence.
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2. Building in mechanisms to models of spillover
As an example of a ‘mechanistic’ model of spillovers, let d1,r,t

represent the density of host species 1 (the donor) in region r
at time t. The disease prevalence is r1,r,t and the rate of shed-

ding given an individual is positive is c. The total amount of

pathogen shed into a region at a point in time would be

d1(r, t)r1(r, t)c. Then the predicted number of spillovers czr,t

in host species 2 would be a function of the total amount of

pathogen being shed and the density of host species 2, the

exact form of which would depend on the route of trans-

mission as well as the ecology and behaviour of host

species 2 and any vectors. We treat r1 and d1 as being directly

estimable from observational data, but note that these

estimates could also come from Susceptible–Infected–

Removed (SIR) compartmental models that predict density

and prevalence as a function of additional demographic

(birth, death and movement) and disease (transmission and

recovery) processes. It is likely that rates of spillover are non-

linear functions of these variables, but this is a useful model

or hypothesis, and observed deviations from this expectation

are an opportunity to identify important mechanisms that

are not yet incorporated. Despite these simplifications, we

show in the text that follows how even this relatively

simple model becomes complicated when we try to combine

many different datasets together and assess the relative

uncertainty in our model predictions. Already however, we

can see that r1, d1 and d2 are either matrices of R total regions

by T total timesteps, or three-dimensional arrays of two-

dimensional spatial layers over time (figure 1), potentially

representing thousands of estimated quantities being multi-

plied together, which is conceptually straightforward but

likely to require supercomputing facilities to run many

scenarios or to propagate errors and assess uncertainty.

Figure 1 highlights some of the issues associated with

going from the observed data on each layer (left side) to stat-

istical inference (right side) and then predictions of spillover

(bottom right). Data come from different sampling designs

and spatio-temporal resolutions. For example, host move-

ment information may come from tracking devices that

collect data at high spatial and temporal resolution (e.g.

daily or hourly). However, the data may be only available

for a few known individuals which may not be representative

of all regions or donor species. In figure 1, the movement data

are summarized by month, while the donor host population

counts are only available annually at a management unit

scale. Individual disease tests may be sparse and collected

at point locations during one season even though pathogen

shedding, vector abundances and disease prevalence may

vary within and across years. Finally, the recipient host den-

sity, d2, may also vary in space and time, and be collected at a

different spatial and temporal resolution. The first challenge

in combining these datasets is to place them on a common

spatial and temporal resolution.

The choice of spatio-temporal resolution affects both the

methodology and the utility of the resulting predictions.

Coarse resolutions allow the aggregation of data, decreasing

the number of regions with missing data and may be appro-

priate for national-level policy and allocation of resources to

states or provinces at highest risk. However, livestock produ-

cers or local governments need finer scale information prior

to investing in preventive measures. Fine-scale predictions

will also require more estimation of unsampled areas,

probably have higher uncertainty, and incur more compu-

tational demands. In addition, movement of hosts across

boundaries is likely to become a more important issue for

finer spatial resolutions.

Data aggregation creates both scale and zoning effects

[12]. The smoothing effect caused by averaging over larger

areas or timespans tends to reduce the heterogeneity among

units. For pathogens or hosts that are highly variable in

space or time, aggregation will result in information loss.

The zoning effect refers to how the location of the regional

boundaries can also affect statistical estimates and con-

clusions. Gerrymandering, or the redrawing of boundaries

to concentrate some types of voters, is an example of the

importance of the zoning effect. In the spatial statistical litera-

ture, this is often referred to as a modifiable areal unit

problem, or more generally, as a change of support problem

[12]. Changing the scale and support of a variable, say by

aggregating point-level data to annual summaries for a

region, creates a new variable with different uncertainty

properties. Correlations between variables, or in this case

between spillover events and donor host and disease distri-

butions, will vary depending on how data are aggregated.

This issue is not easily resolved, but has important conse-

quences for understanding underlying mechanisms [13].

One approach to analysis of data at mismatched scales or

supports is to model the process of interest (i.e. risk) at a res-

olution fine enough that the support of all data streams can

be approximated by aggregating the fine resolution. As

some data sources are only available at coarser resolutions,

a hierarchical model could be constructed [13] in which miss-

ing data at the fine resolution are seen as latent variables to be

estimated. In this approach, data collected at a coarser resol-

ution constrain the latent variables at the fine resolution, as

the sum of the latent process over the region observed at a

coarser resolution must equal the total observation at the

coarser resolution.

Many datasets of population counts, movement or dis-

ease tests will lack information for some regions or times,

or have areas of limited overlap. In figure 1, there are regions

with movement, but not count data and vice versa. To fill in

the missing estimates, one could insert the global mean,

interpolate the mean of its neighbours in space or time, or

predict the missing values based on covariates. Movement

information may help predicting changes in wildlife distri-

butions, particularly for species that seasonally migrate. In

addition, movement data can be used in habitat selection

models to ‘downscale’ regional information on host abun-

dance to more local estimates that account for wildlife hosts

concentrating in better habitats within the region. Most habi-

tat selection models or species distribution models, however,

are based on presence-only information, either from move-

ment or sighting data, and provide only relative, rather

than absolute, measures of selection, occurrence or abun-

dance [14]. This makes it difficult to estimate d directly

from either occurrence or movement data alone [15]. Integrat-

ing host count and movement information may allow for the

estimation of the latent host density, d1,r,t at a finer spatial and

temporal resolution than the count data. However, this

would make for a relatively complicated statistical model

even prior to incorporating the other layers in the spillover

process. As example, electronic supplementary material,

figure S1 shows a directed acyclic graph that illustrates the

various dependencies between the observed movement and
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count data and the inferred host density. This model can then

be fitted with standard Markov chain Monte Carlo

approaches that would allow us to assess our uncertainty in

the density estimates and account for the different scales of

observation. One might wonder whether this level of statisti-

cal detail is necessary. At some spatial and temporal scales, it

may be reasonable to ignore movements across regions. How-

ever, a statistical model will almost certainly be required to

predict unsampled areas, convert from one scale to another,

and generate estimates of uncertainty.

We can construct additional statistical models for esti-

mates of disease prevalence, pathogen shedding, vector

abundance and movement, and recipient host densities.

Any one of the layers in the spillover process can quickly

become complicated. One of the key challenges in this

mechanistic approach is to identify those processes which

may be simplified or ignored while still providing biologi-

cally meaningful inference. The mechanistic approach here

potentially has several different submodels for the different

layers, which are then combined. Deciding which statistical

models to fit jointly, and which can be fitted one at a time,

has important implications for estimating the uncertainty

of our predictions. Fitting models separately and using par-

ameter estimates from one model as fixed parameters in

another model, ignoring the uncertainty in these estimates,

is referred to as an empirical Bayesian approach [16]. More

complicated approaches include propagating the uncer-

tainty in the posterior distribution of parameters in one

model by integrating over that uncertainty, as is done in

multiple imputation, e.g. [17]. A full Bayesian approach

would specify a hierarchical model and obtain joint infer-

ence on all latent variables simultaneously. An empirical

Bayesian approach is likely to produce estimates with less

uncertainty than a full Bayesian approach, while multiple

imputation is likely to produce estimates with more uncer-

tainty than a full Bayesian approach. Thus, inference based

on multiple imputation is likely to be slightly conservative,

while inference based on empirical Bayesian is likely to

be slightly anti-conservative. Recent work has introduced

approaches for approximating fully Bayesian inference

from output from individual models fitted separately [18],

but these approaches have not been applied to systems as

complex as disease risk prediction.

There is little theoretical guidance on the relationship

between empirical Bayesian multiple imputation, and full

Bayesian approaches to inference. Hierarchical Bayesian

inference is often a defensible choice, but we do not view

them as a panacea. Combining multiple models requires sig-

nificant time to understand how the different pieces influence

one another, whether parameters are identifiable, and the

relative importance of prior distributions and data. In

addition, the computational cost can be extreme. Researchers

are time-limited, so time spent on a more complex statistical

model may come at the cost of overlooking some other

important component or assumption. Finally, the appropriate

weighting of different datasets may not be obvious and is

not necessarily proportional to the number of observations

(e.g. global positioning system (GPS) movement datasets

may include millions of locations on only a few individuals).

Developing better methods to understand the uncertainty in

our spillover estimates is an important avenue of future

development—it determines whether regional differences

in risk are significant, given our uncertainty, and where

additional investment could be more optimally allocated to

reduce that uncertainty.

3. Case study: brucellosis in elk, bison and
livestock in Montana and Wyoming

In the 1930s, brucellosis was widespread in livestock across

the USA and a significant human health concern [19]. Test-

and-cull and vaccination programmes in livestock largely

eradicated the disease from domestic animals, but not before

this European pathogen spilled-over from livestock to wildlife

multiple times [20]. Currently, elk (Cervus canadensis) and

bison (Bison bison) in the Greater Yellowstone Ecosystem

of Montana, Wyoming and Idaho are the last reservoirs of

Brucella abortus, one of the causative agents of brucellosis, in

the USA. Several cattle herds are infected by elk in each of

these states per year [21] resulting in quarantines and slaughter

to maintain the disease-free status of the rest of the US livestock

population. As the name suggests, B. abortus is transmitted via

abortion events that primarily occur in the spring [22].

From 2002 to 2014, only 21 livestock herds were affected

in the region, limiting the amount of information that could

be gleaned from the spillovers directly [23]. However,

Brennan et al. [23] concluded that the rate of spillover was

weakly associated with the density of seropositive elk at the

coarse management unit scale and was increasing over

time. This analysis, however, is of limited use to individual

livestock producers for assessing relative risk on federal

grazing allotments versus private properties because of its

coarse spatial scale.

Merkle et al. [24] took a more mechanistic and fine-scale

approach around the supplemental feeding grounds of

Wyoming. These supplemental feeding grounds segregate

elk and bison spatially from livestock during the late winter

and early spring, but also create dense aggregations that

probably facilitate brucellosis transmission within elk. The

feeding grounds also facilitate data collection such that

annual elk population counts, disease testing and movement

information were collected from all feeding grounds. These

datasets were at the same spatial resolution with no missing

information, although some of the datasets were sparse in

particular sites or years. Using movement data, we simulated

the diffusion of elk away from the supplemental feeding

grounds as a function of the receding snowpack and other

habitat covariates (table 1). This movement model provided

a predicted probability density function, which was multi-

plied by the elk counts, disease seroprevalence and the

seasonal timing of abortion events, c, to estimate spillover

risk. The explicit modelling of elk movement from known

point locations facilitated the integration of multiple datasets.

However, the movement model incurred a computation cost

of calculating the probability of movement between every

pair of pixels per day (millions of pairs for each of 23 feeding

grounds), which required us to ignore some long-distance

movement and meant that assessing our uncertainty by

running many simulations was time prohibitive even on

supercomputing facilities.

Rayl et al. [25] conducted a similar risk assessment in

Montana, but was presented with several additional, and

probably common, challenges. First, Montana does not

have supplemental feeding grounds. As a result, monitoring

disease in elk either requires helicopter captures or hunter
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killed samples, and so not all areas had disease prevalence, or

movement data. In addition, the movement, count and preva-

lence data were collected at different scales and elk often

move across management unit boundaries. Our previous

movement modelling approaches were not as effective in

this region, so we used a more traditional resource selection

approach that allowed us to downscale the population

counts and account for habitat selection within a manage-

ment unit. However, this methodology did not account for

movement across regional boundaries, which is an important

part of comparing risks among regions if a significant fraction

of the population moves among units within a year. In

addition, for regions where no movement data are available,

one would have to infer movement using data from other

regions. Rayl et al. [25] did not model this movement across

regions, but instead assumed no movement where the data

were lacking. In this study, uncertainties were not integrated

and errors were not propagated comprehensively. In part,

this was because some layers (e.g. population counts) did

not have any assessment of their measurement error or a rig-

orous sampling design, but computational limitations also

played a role.

Despite the limitations, this process provided both

biological and methodological insight. In this system, host

population size, disease prevalence and movements were

all highly variable in space and time. As a result, none

could be easily ignored in the risk assessment process.

While doing the Montana study, we also realized that

accounting for seasonal changes in where livestock are

located during the transmission season is critical, which

was partially accomplished by including information on

when public properties were available for cattle grazing.

This additional information changed our conclusions about

spillover risk, highlighting that most spillovers were pre-

dicted to occur on private properties rather than federal

grazing allotments. More complete information on livestock

density and movements is often limited by privacy concerns

within the USA (table 1).

Only 30 spillover events have been observed in the region

from 2001 to 2018 (electronic supplementary material,

figure S2), which limits opportunities for more direct statisti-

cal modelling of the spillover events themselves. However,

mechanistic risk estimates of where elk may be transmitting

B. abortus were crudely correlated with reported spillover

events (electronic supplementary material, figure S2). Out-

liers in the electronic supplementary material, figure S2

demonstrate the need for further model refinements. In one

management unit, predicted risks were almost two times

higher than other areas, but no livestock herds have

been infected there. This discrepancy may be because few

livestock were present in that unit even though the land

was zoned for agricultural use, a weakness with using data

on ‘potential’ areas of livestock occupancy rather than

actual density estimates.

4. Case study: goose/guangdong lineage highly
pathogenic avian influenza in waterfowl and
poultry in China and North America

In 1996, a novel goose/guangdong (GsGD) lineage of highly

pathogenic avian influenza virus (HPAIV) emerged in China

[29]. Unlike previous HPAIVs that evolved and remained in

domestic poultry (recipient host) populations following spil-

lover, GsGD HPAIVs have periodically spilled back into

wild birds where they have continued to spread, evolve

and been associated with mortality events [30]. GsGD

HPAIV has now been disseminated throughout countries in

Asia, Africa, Europe and North America [31] where it has

caused considerable economic losses. A potentially important

mechanism of spread of GsGD HPAIV is repeated spillover

and spillback of GsGD HPAIV between wild birds and dom-

estic poultry. The challenges of estimating spillover and

spillback of GsGD HPAIV in China and North America

were greater than the brucellosis examples above because of

the larger spatial scale covered by the reservoir host species

and the fact that there are many different competent reservoir

host species.

To identify H5N1 transmission risk at the interface

between wild and domestic birds within China, Prosser

et al. [26] developed large-scale nationwide mechanistic

models of spillover and spillback. The largest challenge was

the lack of spatial and temporal information on wild water-

fowl (donor) and poultry (recipient) densities (d1, d2). As

H5N1 prevalence, susceptibility and pathogenicity differed

among species within the recipient and donor populations

[32,33], density distributions needed to be considered across

a suite of susceptible species; for China, this included three

recipient species and more than 30 donor species. The

approach for achieving spatial layers for d2 included

disaggregating species-level poultry census data using agri-

cultural and environmental covariates to produce 1 km

resolution gridded density predictions [34]. A substantial

challenge to this approach was the variation in spatial scale

of census data, which ranged from county to province level.

In addition, poultry metrics (e.g. population numbers, total

sold, etc.) were not consistently available across all regions,

thus additional analyses were needed to identify relation-

ships among the available metrics and model these to

produce the final population estimates. Input data (c, m) for

the donor hosts (wild waterfowl) were less available than

for poultry, forcing a different iterative modelling approach.

First steps defined suitable habitats for each species and

across subannual seasons, as migratory behaviour results in

very different seasonal distributions [27]. To create geospatial

layers of d1, abundance estimates [35,36] were distributed

across the predicted habitat ranges [28]. Given the large

number of donor species potentially associated with

HPAIV, it is unlikely that comprehensive challenge studies

or surveillance efforts could cover all species equally. We

took the approach of binning species into applicable guilds

and applied c and r estimates to these guilds using available

data (e.g. [35,37,38]). Inclusion of uncertainty estimates was

important, given the multitude of modelling steps that inte-

grated inputs having very different levels of confidence,

both between layers and geospatially within layers. Prob-

ability density functions ranged from normal (d2) to

triangular (d1, biosecurity), to uniform (c, virus uptake).

Propagating the uncertainty across all variables and models

required high levels of computing power and reducing

the model resolution from 1 to 30 km. A strong match

exists between our transmission risk models and existing out-

breaks; however, the available surveillance and phylogenetic

data were not able to identify spillover and spillback events

versus farm-to-farm transmission. This restricts our ability
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to do more formal validations of our mechanistic approaches

or correlational models of the spillover events themselves.

Advances in phylogenetic approaches to identify spillover

events versus subsequent transmission in the recipient are

an important avenue for continued development.

In North America, Clade v. 2.3.4.4 GsGD lineage HPAIV

was first introduced in late 2014 [31,39,40], resulting in

widespread poultry outbreaks, and phylodynamic analyses

supported numerous instances of spillover and spillback

across the wild bird–poultry interface [41]. Modelling efforts

suggested that HPAIV could be maintained in both wild bird

and poultry host populations [42], but, to our knowledge,

quantitative risk assessments similar to those described

above have not yet been conducted. In addition, there is cur-

rently no routine wildlife surveillance for spillover of avian

influenza at the wildlife–livestock interface. Future risk

modelling in North America is likely to encounter similar

challenges to those described above. Donor host population

distributions, densities (d1) and movement (m) over time

have been estimated at coarse spatial scales (200 � 200 km)

from waterfowl banding and recovery data (e.g. [43]), but

producer-level risk would require finer spatial resolution.

Like our cattle example, poultry farm locations are not

publicly available in the USA for privacy reasons and must

be estimated from survey data. Additionally, limited data

exist on backyard poultry production, which has lower

biosecurity relative to commercial operations, but can interact

with the commercial and live-bird markets. Therefore, it is

an important component in overall spillover risk [44].

Surveillance at the wildlife–livestock interface is critical to

observe spillover and spillback mechanisms in real time,

and ultimately to develop risk assessment frameworks for

North America.

5. Discussion
Identifying the regions and times of high transmission risk

across wildlife, livestock and humans will allow for more

efficient surveillance, control and prevention efforts. Here,

we focused on mechanistic approaches for estimating

spillover risk between wildlife and domestic animals,

which are especially useful in systems where spillover

events are infrequent, rarely observed, or hard to differentiate

from within-species transmission events. The mechanistic

approach can provide an a priori hypothesis about how the

different layers contribute to spillover risk and predict the

effectiveness of different interventions. Phenomenological

models that directly correlate spillover events to covariates

provide an alternative approach that requires more spillover

events but does not necessarily require host density or patho-

gen shedding information as covariates. The combination

and confrontation of these two approaches will help refine

our mechanistic understanding (electronic supplementary

material, figure S2). For example, in the brucellosis system,

we have predicted high levels of livestock risk in some

regions with no observed cattle cases. This discrepancy is

probably owing to our lack of information on where cattle

are located owing to privacy issues. In addition, we often

assume host susceptibility and pathogen shedding rates do

not vary spatially. Observing more spillovers in areas of pre-

dicted lower risk based on host disease distributions may

indicate when these assumptions should be re-evaluated.

The ability to differentiate spillover events from second-

ary transmission within a given host species will vary by

system. In systems where the recipient host is a dead-end

[45], all recipient host infections are spillovers. However, as

the transmission rate in the recipient host species increases,

the ability to identify primary spillover events versus second-

ary within-species transmission will become more difficult. In

the brucellosis example, most, if not all, livestock outbreaks

were independent spillovers from elk [20]. In the GsGD

HPAIV example, spillovers were less obvious in China and

the USA owing to transmission back to wildlife and differen-

tiating primary versus secondary cases, which may have been

owing to poultry-to-poultry transmission. Pathogen geno-

mics plays an increasingly important role in identifying

spillover events, but inference can still be limited by spillover

frequency, sampling designs, availability of metadata,

substitution rate and genome size [46].

We have focused on case studies of avian influenza and

brucellosis at the wildlife–livestock interface, but the chal-

lenges we encountered are likely to be similar to many

human systems. First, datasets may not align in space and

time, which requires a statistical model to predict the

unsampled areas and times across the multiple datasets

using the available information. For avian influenza, this pro-

blem can be exacerbated by the fact that there are many

potential donor host species that can move long distances

in short periods of time such that it can be difficult to

obtain samples from all relevant hosts in the same place at

the same time. Thus, disease dynamics and spillover risk

are highly variable in space and time. Second, data on wild-

life distributions tend to be sparse and sampled at a coarse

spatial and temporal scale, while we would often like to

know risk to agricultural producers or people at a much

finer scale. This issue was even more difficult in the GsGD

HPAIV case study where the full scope of competent reser-

voir species remains poorly understood, and species-level

differences in transmission potential and contact rates of

reservoir species with poultry are not well known. Third,

one might expect that the distribution and density of agricul-

tural species is more well known than their wildlife

counterparts; however, this information is often protected

owing to privacy concerns. Finally, inconsistencies in data

reporting (e.g. omission of species-level information, lack of

clarity in measurement error) are another common challenge.

Hierarchical Bayesian approaches are an obvious way to

synthesize multiple datasets and propagate uncertainties,

and have been extended to dynamical spatio-temporal

models [47]. However, the inclusion of many different likeli-

hoods and datasets can be challenging to implement and fit

depending on system-specific data features. Often, we will

desire risk assessments at the finest resolution and broadest

scale possible, but this will be limited by both the available

data and computational demands. Even with improvements

in computing speeds, researchers may still need to make com-

promises on spatio-temporal resolution, extent and how

uncertainty is characterized. Statistical inference on high-

resolution spatio-temporal systems is challenging, especially

when mechanistic, science-based models are used. Multi-

resolution approaches have shown promise in some fields,

with, for example, homogenization (harmonic averaging

over multiple scales) providing a computationally efficient

approach to ecological diffusion [48,49]. Another approach

to approximate inference is to replace a computationally
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challenging likelihood (i.e. the likelihood of observed sero-

prevalence data which depends on a mechanistic spatial

SIR model which must be solved numerically) with an emu-

lated likelihood, where the true process is approximated by a

nonlinear, flexible statistical or machine learning model for

the process [50].

The challenges listed above lead us to several suggestions

for future work. Restif et al. [51] nicely outline how models

can be used to guide data collection, hone hypotheses and

provide a nexus for multidisciplinary collaboration. Model

predictions are only as good as the data we collect. In our

case studies, data collection largely preceded the mathemat-

ical model specification. However, our initial mechanistic

models can now highlight data gaps and we can iteratively

improve both the field data collection and the model

design. Modelling results may suggest where resources

could be allocated to more efficiently reduce our prediction

uncertainty and target layers of the spillover process that

are most influential in prediction and less costly to sample.

Improving predictions of disease spillover will require an

iterative approach; however, model-guided fieldwork has

not been implemented very often [52]. Consistent relation-

ships across disciplines, agencies and stakeholders, and

long-term funding of team efforts are needed to provide

relevant data for modelling spillover risk. Mechanistic model-

ling approaches can determine more efficient and feasible

data collection of the most important parameters.
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S1. Directed acyclic graph of a statistical model of the donor host population size. 
S2. A comparison of observed versus predicted spillover events for the brucellosis case-study

Figure S1. Directed acyclic graph of a statistical model of the donor host population size, , in spatial 
regions r and time periods t. Blue areas are the observed data, while pink areas are latent and estimated. 
The observed count data, c, at a different spatial scale, q, and time period u are dependent on the host 
density as well as the sightability . Host movement, w, into a region j from all of its neighbors J affects 
the host population distribution over time as well as the observed movement data m for individuals n, 
which may also be collected at a different temporal resolution. 
 

Figure S2. The relationship between the number of observed brucellosis spillover events in livestock 
herds from 2001 to 2018 and the predicted number of elk transmission events per year in areas potentially 
occupied by livestock.  Each point is a different elk management unit in Montana and Wyoming. 
Predictions are based upon ([1] and [2]).  
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