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For pathogens known to transmit across host species, strategic investment in
disease control requires knowledge about where and when spillover
transmission is likely. One approach to estimating spillover is to directly cor-
relate observed spillover events with covariates. An alternative is to
mechanistically combine information on host density, distribution and patho-
gen prevalence to predict where and when spillover events are expected to
occur. We use several case studies at the wildlife—livestock disease interface
to highlight the challenges, and potential solutions, to estimating spatio-
temporal variation in spillover risk. Datasets on multiple host species often
do not align in space, time or resolution, and may have no estimates of obser-
vation error. Linking these datasets requires they be related to a common
spatial and temporal resolution and appropriately propagating errors in
predictions can be difficult. Hierarchical models are one potential solution,
but for fine-resolution predictions at broad spatial scales, many models
become computationally challenging. Despite these limitations, the confron-
tation of mechanistic predictions with observed events is an important
avenue for developing a better understanding of pathogen spillover. Systems
where data have been collected at all levels in the spillover process are rare, or
non-existent, and require investment and sustained effort across disciplines.

This article is part of the theme issue ‘Dynamic and integrative
approaches to understanding pathogen spillover’.

1. Introduction

Predicting where and when a pathogen will transmit, or spillover, from a
reservoir host to another species is a key issue for managing health risks to
humans, livestock and wildlife [1-3]. Developing a better understanding of
this transmission process would allow for more strategic investment of
resources to disease prevention, by optimizing the allocation of assets to
areas, populations and times of highest spillover risk. Models of disease
spillover come in many different forms—from models of viral evolution
within a host, to Kermack—McKendrick models of disease dynamics over
time in a population, to phenomenological statistical models of disease
emergence events [4,5]. Here, we focus on estimating the spillover dynamics
of pathogens known to transmit across the wildlife-livestock interface. We
describe research challenges and opportunities for mechanistic models to
improve our understanding and prediction of pathogen spillover, and highlight
lessons learned from case studies of brucellosis and avian influenza.
Lloyd-Smith et al. [6] noted how the force of infection from one host species
to another is a function of prevalence in the reservoir (donor host (1)), contact
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Figure 1. Observational data are collected at a variety of spatial and temporal resolutions (e.g. v = month, u = year, d = day of year, ¢ = management units
and / = point locations) that must be related to the regions, r, and times, t, of interest. A mechanistic approach estimates the underlying layers and combines them
together to predict spillover (across rows and then down), while a phenomenological approach uses the spillover data themselves to predict exposures (bottom row)
and relates that to covariates. Black regions represent missing count and density data, while white regions reflect recipient host densities that are zero. Movement
data (here depicted as from three individuals) may be missing from some regions and years. Disease testing data may be collected as point locations but need to be
smoothed over space or time. Pathogen shedding may vary seasonally either owing to the population dynamics of vectors or owing to within-year variation in

disease prevalence.

rate between donor and recipient host species (h;) and
probability of infection given contact. Plowright et al. [7] ela-
borated on this idea, noting how the contact rates among host
species depend on spatial distribution and host density as
well as the persistence and movement of the pathogen in
the environment or vectors. These factors can be modelled
as a series of conditional probabilities [7]. Conceptually,
this process is straightforward; however, when trying to
apply this framework to specific systems and datasets, we
have encountered numerous challenges.

Disease models typically focus on the dynamics in either
the donor or recipient host species [6]. More comprehensive
spillover risk assessments will require a synthesis of many
datasets across host species and will vary along a spectrum
of mechanistic and phenomenological approaches. By
phenomenological, we mean approaches that relate the
observed spillover events, z, as the dependent variable to
some linear or nonlinear function of predictor variables,
X, and coefficients B (e.g. [5,8,9]). Alternatively, one could
combine information on host species density, prevalence,
contact rate and infection rates to predict the number of
spillovers, 2, [7] even when observed data on spillovers
are rare or non-existent. We refer to the latter approach as
‘mechanistic’. This is imperfect terminology because what
constitutes a mechanism to one researcher may be phenom-
enological to another. In addition, newer statistical
approaches are blurring the differences between mechanis-
tic and statistical models [10,11] and phenomenological
models of spillover may include covariate data on host
and pathogen distributions. Nonetheless, we find this to
be a useful shorthand.

In figure 1, mechanistic approaches attempt to move
from data to inference about spillovers by first going left

to right across each layer (rows) to create spatio-temporal
distributions of host density, pathogen prevalence, trans-
mission and shedding. Those spatio-temporal maps can
then be combined to predict spillover events. Phenomeno-
logical models move directly across the bottom row of
figure 1, using direct observations of spillovers to estimate
risk using covariates (e.g. temperature, precipitation,
habitat type and land-use) that are correlated with host
and pathogen distributions but may not include direct
information on those components. By choosing covariates
that align well with the spatial and temporal resolution
of interest, phenomenological models may avoid some of
the difficulty noted below when direct estimates of host
density and pathogen shedding patterns are required.
A mechanistic approach may be possible when spillover
events are rare or are hard to differentiate from subse-
quent transmission in the recipient host. When spillover
events are common, they can be investigated directly
using either mechanistic or phenomenological models.
Mechanistic models are likely to be constructed at finer
spatio-temporal resolutions, making them more useful to
local landowners and agencies compared to the coarser
resolutions in phenomenological models that are informa-
tive at the regional, or national, level. Both approaches
are important and useful, particularly when they can be
compared to one another, and they are challenged by
similar empirical issues. We focus below on the empirical
issues that we have encountered in several well-studied
wildlife-livestock systems. We briefly describe the
elements of a mechanistic approach to spillover and then
relate this to our case studies. We end with a discussion
of the challenges and potential ways forward in the
empirical estimation of disease spillover.
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As an example of a ‘mechanistic’ model of spillovers, let &, ,,
represent the density of host species 1 (the donor) in region r
at time . The disease prevalence is p; ,; and the rate of shed-
ding given an individual is positive is . The total amount of
pathogen shed into a region at a point in time would be
8(r, t)pa(r, t)¢p. Then the predicted number of spillovers z,;
in host species 2 would be a function of the total amount of
pathogen being shed and the density of host species 2, the
exact form of which would depend on the route of trans-
mission as well as the ecology and behaviour of host
species 2 and any vectors. We treat p; and 8; as being directly
estimable from observational data, but note that these
estimates could also come from Susceptible—Infected-
Removed (SIR) compartmental models that predict density
and prevalence as a function of additional demographic
(birth, death and movement) and disease (transmission and
recovery) processes. It is likely that rates of spillover are non-
linear functions of these variables, but this is a useful model
or hypothesis, and observed deviations from this expectation
are an opportunity to identify important mechanisms that
are not yet incorporated. Despite these simplifications, we
show in the text that follows how even this relatively
simple model becomes complicated when we try to combine
many different datasets together and assess the relative
uncertainty in our model predictions. Already however, we
can see that p;, 8, and &, are either matrices of R total regions
by T total timesteps, or three-dimensional arrays of two-
dimensional spatial layers over time (figure 1), potentially
representing thousands of estimated quantities being multi-
plied together, which is conceptually straightforward but
likely to require supercomputing facilities to run many
scenarios or to propagate errors and assess uncertainty.

Figure 1 highlights some of the issues associated with
going from the observed data on each layer (left side) to stat-
istical inference (right side) and then predictions of spillover
(bottom right). Data come from different sampling designs
and spatio-temporal resolutions. For example, host move-
ment information may come from tracking devices that
collect data at high spatial and temporal resolution (e.g.
daily or hourly). However, the data may be only available
for a few known individuals which may not be representative
of all regions or donor species. In figure 1, the movement data
are summarized by month, while the donor host population
counts are only available annually at a management unit
scale. Individual disease tests may be sparse and collected
at point locations during one season even though pathogen
shedding, vector abundances and disease prevalence may
vary within and across years. Finally, the recipient host den-
sity, 8,, may also vary in space and time, and be collected at a
different spatial and temporal resolution. The first challenge
in combining these datasets is to place them on a common
spatial and temporal resolution.

The choice of spatio-temporal resolution affects both the
methodology and the utility of the resulting predictions.
Coarse resolutions allow the aggregation of data, decreasing
the number of regions with missing data and may be appro-
priate for national-level policy and allocation of resources to
states or provinces at highest risk. However, livestock produ-
cers or local governments need finer scale information prior
to investing in preventive measures. Fine-scale predictions
will also require more estimation of unsampled areas,

probably have higher uncertainty, and incur more compu-
tational demands. In addition, movement of hosts across
boundaries is likely to become a more important issue for
finer spatial resolutions.

Data aggregation creates both scale and zoning effects
[12]. The smoothing effect caused by averaging over larger
areas or timespans tends to reduce the heterogeneity among
units. For pathogens or hosts that are highly variable in
space or time, aggregation will result in information loss.
The zoning effect refers to how the location of the regional
boundaries can also affect statistical estimates and con-
clusions. Gerrymandering, or the redrawing of boundaries
to concentrate some types of voters, is an example of the
importance of the zoning effect. In the spatial statistical litera-
ture, this is often referred to as a modifiable areal unit
problem, or more generally, as a change of support problem
[12]. Changing the scale and support of a variable, say by
aggregating point-level data to annual summaries for a
region, creates a new variable with different uncertainty
properties. Correlations between variables, or in this case
between spillover events and donor host and disease distri-
butions, will vary depending on how data are aggregated.
This issue is not easily resolved, but has important conse-
quences for understanding underlying mechanisms [13].
One approach to analysis of data at mismatched scales or
supports is to model the process of interest (i.e. risk) at a res-
olution fine enough that the support of all data streams can
be approximated by aggregating the fine resolution. As
some data sources are only available at coarser resolutions,
a hierarchical model could be constructed [13] in which miss-
ing data at the fine resolution are seen as latent variables to be
estimated. In this approach, data collected at a coarser resol-
ution constrain the latent variables at the fine resolution, as
the sum of the latent process over the region observed at a
coarser resolution must equal the total observation at the
coarser resolution.

Many datasets of population counts, movement or dis-
ease tests will lack information for some regions or times,
or have areas of limited overlap. In figure 1, there are regions
with movement, but not count data and vice versa. To fill in
the missing estimates, one could insert the global mean,
interpolate the mean of its neighbours in space or time, or
predict the missing values based on covariates. Movement
information may help predicting changes in wildlife distri-
butions, particularly for species that seasonally migrate. In
addition, movement data can be used in habitat selection
models to ‘downscale’ regional information on host abun-
dance to more local estimates that account for wildlife hosts
concentrating in better habitats within the region. Most habi-
tat selection models or species distribution models, however,
are based on presence-only information, either from move-
ment or sighting data, and provide only relative, rather
than absolute, measures of selection, occurrence or abun-
dance [14]. This makes it difficult to estimate & directly
from either occurrence or movement data alone [15]. Integrat-
ing host count and movement information may allow for the
estimation of the latent host density, 8; , ; at a finer spatial and
temporal resolution than the count data. However, this
would make for a relatively complicated statistical model
even prior to incorporating the other layers in the spillover
process. As example, electronic supplementary material,
figure S1 shows a directed acyclic graph that illustrates the
various dependencies between the observed movement and



count data and the inferred host density. This model can then
be fitted with standard Markov chain Monte Carlo
approaches that would allow us to assess our uncertainty in
the density estimates and account for the different scales of
observation. One might wonder whether this level of statisti-
cal detail is necessary. At some spatial and temporal scales, it
may be reasonable to ignore movements across regions. How-
ever, a statistical model will almost certainly be required to
predict unsampled areas, convert from one scale to another,
and generate estimates of uncertainty.

We can construct additional statistical models for esti-
mates of disease prevalence, pathogen shedding, vector
abundance and movement, and recipient host densities.
Any one of the layers in the spillover process can quickly
become complicated. One of the key challenges in this
mechanistic approach is to identify those processes which
may be simplified or ignored while still providing biologi-
cally meaningful inference. The mechanistic approach here
potentially has several different submodels for the different
layers, which are then combined. Deciding which statistical
models to fit jointly, and which can be fitted one at a time,
has important implications for estimating the uncertainty
of our predictions. Fitting models separately and using par-
ameter estimates from one model as fixed parameters in
another model, ignoring the uncertainty in these estimates,
is referred to as an empirical Bayesian approach [16]. More
complicated approaches include propagating the uncer-
tainty in the posterior distribution of parameters in one
model by integrating over that uncertainty, as is done in
multiple imputation, e.g. [17]. A full Bayesian approach
would specify a hierarchical model and obtain joint infer-
ence on all latent variables simultaneously. An empirical
Bayesian approach is likely to produce estimates with less
uncertainty than a full Bayesian approach, while multiple
imputation is likely to produce estimates with more uncer-
tainty than a full Bayesian approach. Thus, inference based
on multiple imputation is likely to be slightly conservative,
while inference based on empirical Bayesian is likely to
be slightly anti-conservative. Recent work has introduced
approaches for approximating fully Bayesian inference
from output from individual models fitted separately [18],
but these approaches have not been applied to systems as
complex as disease risk prediction.

There is little theoretical guidance on the relationship
between empirical Bayesian multiple imputation, and full
Bayesian approaches to inference. Hierarchical Bayesian
inference is often a defensible choice, but we do not view
them as a panacea. Combining multiple models requires sig-
nificant time to understand how the different pieces influence
one another, whether parameters are identifiable, and the
relative importance of prior distributions and data. In
addition, the computational cost can be extreme. Researchers
are time-limited, so time spent on a more complex statistical
model may come at the cost of overlooking some other
important component or assumption. Finally, the appropriate
weighting of different datasets may not be obvious and is
not necessarily proportional to the number of observations
(e.g. global positioning system (GPS) movement datasets
may include millions of locations on only a few individuals).
Developing better methods to understand the uncertainty in
our spillover estimates is an important avenue of future
development—it determines whether regional differences
in risk are significant, given our uncertainty, and where

additional investment could be more optimally allocated to [ 4 |

reduce that uncertainty.

3. Case study: brucellosis in elk, bison and
livestock in Montana and Wyoming

In the 1930s, brucellosis was widespread in livestock across
the USA and a significant human health concern [19]. Test-
and-cull and vaccination programmes in livestock largely
eradicated the disease from domestic animals, but not before
this European pathogen spilled-over from livestock to wildlife
multiple times [20]. Currently, elk (Cervus canadensis) and
bison (Bison bison) in the Greater Yellowstone Ecosystem
of Montana, Wyoming and Idaho are the last reservoirs of
Brucella abortus, one of the causative agents of brucellosis, in
the USA. Several cattle herds are infected by elk in each of
these states per year [21] resulting in quarantines and slaughter
to maintain the disease-free status of the rest of the US livestock
population. As the name suggests, B. abortus is transmitted via
abortion events that primarily occur in the spring [22].

From 2002 to 2014, only 21 livestock herds were affected
in the region, limiting the amount of information that could
be gleaned from the spillovers directly [23]. However,
Brennan ef al. [23] concluded that the rate of spillover was
weakly associated with the density of seropositive elk at the
coarse management unit scale and was increasing over
time. This analysis, however, is of limited use to individual
livestock producers for assessing relative risk on federal
grazing allotments versus private properties because of its
coarse spatial scale.

Merkle et al. [24] took a more mechanistic and fine-scale
approach around the supplemental feeding grounds of
Wyoming. These supplemental feeding grounds segregate
elk and bison spatially from livestock during the late winter
and early spring, but also create dense aggregations that
probably facilitate brucellosis transmission within elk. The
feeding grounds also facilitate data collection such that
annual elk population counts, disease testing and movement
information were collected from all feeding grounds. These
datasets were at the same spatial resolution with no missing
information, although some of the datasets were sparse in
particular sites or years. Using movement data, we simulated
the diffusion of elk away from the supplemental feeding
grounds as a function of the receding snowpack and other
habitat covariates (table 1). This movement model provided
a predicted probability density function, which was multi-
plied by the elk counts, disease seroprevalence and the
seasonal timing of abortion events, i, to estimate spillover
risk. The explicit modelling of elk movement from known
point locations facilitated the integration of multiple datasets.
However, the movement model incurred a computation cost
of calculating the probability of movement between every
pair of pixels per day (millions of pairs for each of 23 feeding
grounds), which required us to ignore some long-distance
movement and meant that assessing our uncertainty by
running many simulations was time prohibitive even on
supercomputing facilities.

Rayl et al. [25] conducted a similar risk assessment in
Montana, but was presented with several additional, and
probably common, challenges. First, Montana does not
have supplemental feeding grounds. As a result, monitoring
disease in elk either requires helicopter captures or hunter
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killed samples, and so not all areas had disease prevalence, or
movement data. In addition, the movement, count and preva-
lence data were collected at different scales and elk often
move across management unit boundaries. Our previous
movement modelling approaches were not as effective in
this region, so we used a more traditional resource selection
approach that allowed us to downscale the population
counts and account for habitat selection within a manage-
ment unit. However, this methodology did not account for
movement across regional boundaries, which is an important
part of comparing risks among regions if a significant fraction
of the population moves among units within a year. In
addition, for regions where no movement data are available,
one would have to infer movement using data from other
regions. Rayl et al. [25] did not model this movement across
regions, but instead assumed no movement where the data
were lacking. In this study, uncertainties were not integrated
and errors were not propagated comprehensively. In part,
this was because some layers (e.g. population counts) did
not have any assessment of their measurement error or a rig-
orous sampling design, but computational limitations also
played a role.

Despite the limitations, this process provided both
biological and methodological insight. In this system, host
population size, disease prevalence and movements were
all highly variable in space and time. As a result, none
could be easily ignored in the risk assessment process.
While doing the Montana study, we also realized that
accounting for seasonal changes in where livestock are
located during the transmission season is critical, which
was partially accomplished by including information on
when public properties were available for cattle grazing.
This additional information changed our conclusions about
spillover risk, highlighting that most spillovers were pre-
dicted to occur on private properties rather than federal
grazing allotments. More complete information on livestock
density and movements is often limited by privacy concerns
within the USA (table 1).

Only 30 spillover events have been observed in the region
from 2001 to 2018 (electronic supplementary material,
figure S2), which limits opportunities for more direct statisti-
cal modelling of the spillover events themselves. However,
mechanistic risk estimates of where elk may be transmitting
B. abortus were crudely correlated with reported spillover
events (electronic supplementary material, figure S2). Out-
liers in the electronic supplementary material, figure S2
demonstrate the need for further model refinements. In one
management unit, predicted risks were almost two times
higher than other areas, but no livestock herds have
been infected there. This discrepancy may be because few
livestock were present in that unit even though the land
was zoned for agricultural use, a weakness with using data
on ‘potential’ areas of livestock occupancy rather than
actual density estimates.

4. (ase study: goose/quangdong lineage highly
pathogenic avian influenza in waterfowl and

poultry in China and North America

In 1996, a novel goose/guangdong (GsGD) lineage of highly
pathogenic avian influenza virus (HPAIV) emerged in China

[29]. Unlike previous HPAIVs that evolved and remained in
domestic poultry (recipient host) populations following spil-
lover, GsGD HPAIVs have periodically spilled back into
wild birds where they have continued to spread, evolve
and been associated with mortality events [30]. GsGD
HPAIV has now been disseminated throughout countries in
Asia, Africa, Europe and North America [31] where it has
caused considerable economic losses. A potentially important
mechanism of spread of GsGD HPAIV is repeated spillover
and spillback of GsGD HPAIV between wild birds and dom-
estic poultry. The challenges of estimating spillover and
spillback of GsGD HPAIV in China and North America
were greater than the brucellosis examples above because of
the larger spatial scale covered by the reservoir host species
and the fact that there are many different competent reservoir
host species.

To identify H5NI1 transmission risk at the interface
between wild and domestic birds within China, Prosser
et al. [26] developed large-scale nationwide mechanistic
models of spillover and spillback. The largest challenge was
the lack of spatial and temporal information on wild water-
fowl (donor) and poultry (recipient) densities (8;, 8,). As
H5N1 prevalence, susceptibility and pathogenicity differed
among species within the recipient and donor populations
[32,33], density distributions needed to be considered across
a suite of susceptible species; for China, this included three
recipient species and more than 30 donor species. The
approach for achieving spatial layers for &, included
disaggregating species-level poultry census data using agri-
cultural and environmental covariates to produce 1km
resolution gridded density predictions [34]. A substantial
challenge to this approach was the variation in spatial scale
of census data, which ranged from county to province level.
In addition, poultry metrics (e.g. population numbers, total
sold, etc.) were not consistently available across all regions,
thus additional analyses were needed to identify relation-
ships among the available metrics and model these to
produce the final population estimates. Input data (c, m) for
the donor hosts (wild waterfowl) were less available than
for poultry, forcing a different iterative modelling approach.
First steps defined suitable habitats for each species and
across subannual seasons, as migratory behaviour results in
very different seasonal distributions [27]. To create geospatial
layers of &;, abundance estimates [35,36] were distributed
across the predicted habitat ranges [28]. Given the large
number of donor species potentially associated with
HPALIV, it is unlikely that comprehensive challenge studies
or surveillance efforts could cover all species equally. We
took the approach of binning species into applicable guilds
and applied ¢ and p estimates to these guilds using available
data (e.g. [35,37,38]). Inclusion of uncertainty estimates was
important, given the multitude of modelling steps that inte-
grated inputs having very different levels of confidence,
both between layers and geospatially within layers. Prob-
ability density functions ranged from normal (&) to
triangular (8;, biosecurity), to uniform (i, virus uptake).
Propagating the uncertainty across all variables and models
required high levels of computing power and reducing
the model resolution from 1 to 30km. A strong match
exists between our transmission risk models and existing out-
breaks; however, the available surveillance and phylogenetic
data were not able to identify spillover and spillback events
versus farm-to-farm transmission. This restricts our ability
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to do more formal validations of our mechanistic approaches
or correlational models of the spillover events themselves.
Advances in phylogenetic approaches to identify spillover
events versus subsequent transmission in the recipient are
an important avenue for continued development.

In North America, Clade v. 2.3.4.4 GsGD lineage HPAIV
was first introduced in late 2014 [31,39,40], resulting in
widespread poultry outbreaks, and phylodynamic analyses
supported numerous instances of spillover and spillback
across the wild bird—poultry interface [41]. Modelling efforts
suggested that HPAIV could be maintained in both wild bird
and poultry host populations [42], but, to our knowledge,
quantitative risk assessments similar to those described
above have not yet been conducted. In addition, there is cur-
rently no routine wildlife surveillance for spillover of avian
influenza at the wildlife-livestock interface. Future risk
modelling in North America is likely to encounter similar
challenges to those described above. Donor host population
distributions, densities (6;) and movement (m) over time
have been estimated at coarse spatial scales (200 x 200 km)
from waterfowl banding and recovery data (e.g. [43]), but
producer-level risk would require finer spatial resolution.
Like our cattle example, poultry farm locations are not
publicly available in the USA for privacy reasons and must
be estimated from survey data. Additionally, limited data
exist on backyard poultry production, which has lower
biosecurity relative to commercial operations, but can interact
with the commercial and live-bird markets. Therefore, it is
an important component in overall spillover risk [44].
Surveillance at the wildlife-livestock interface is critical to
observe spillover and spillback mechanisms in real time,
and ultimately to develop risk assessment frameworks for
North America.

5. Discussion

Identifying the regions and times of high transmission risk
across wildlife, livestock and humans will allow for more
efficient surveillance, control and prevention efforts. Here,
we focused on mechanistic approaches for estimating
spillover risk between wildlife and domestic animals,
which are especially useful in systems where spillover
events are infrequent, rarely observed, or hard to differentiate
from within-species transmission events. The mechanistic
approach can provide an a priori hypothesis about how the
different layers contribute to spillover risk and predict the
effectiveness of different interventions. Phenomenological
models that directly correlate spillover events to covariates
provide an alternative approach that requires more spillover
events but does not necessarily require host density or patho-
gen shedding information as covariates. The combination
and confrontation of these two approaches will help refine
our mechanistic understanding (electronic supplementary
material, figure S2). For example, in the brucellosis system,
we have predicted high levels of livestock risk in some
regions with no observed cattle cases. This discrepancy is
probably owing to our lack of information on where cattle
are located owing to privacy issues. In addition, we often
assume host susceptibility and pathogen shedding rates do
not vary spatially. Observing more spillovers in areas of pre-
dicted lower risk based on host disease distributions may
indicate when these assumptions should be re-evaluated.

The ability to differentiate spillover events from second-
ary transmission within a given host species will vary by
system. In systems where the recipient host is a dead-end
[45], all recipient host infections are spillovers. However, as
the transmission rate in the recipient host species increases,
the ability to identify primary spillover events versus second-
ary within-species transmission will become more difficult. In
the brucellosis example, most, if not all, livestock outbreaks
were independent spillovers from elk [20]. In the GsGD
HPAIV example, spillovers were less obvious in China and
the USA owing to transmission back to wildlife and differen-
tiating primary versus secondary cases, which may have been
owing to poultry-to-poultry transmission. Pathogen geno-
mics plays an increasingly important role in identifying
spillover events, but inference can still be limited by spillover
frequency, sampling designs, availability of metadata,
substitution rate and genome size [46].

We have focused on case studies of avian influenza and
brucellosis at the wildlife-livestock interface, but the chal-
lenges we encountered are likely to be similar to many
human systems. First, datasets may not align in space and
time, which requires a statistical model to predict the
unsampled areas and times across the multiple datasets
using the available information. For avian influenza, this pro-
blem can be exacerbated by the fact that there are many
potential donor host species that can move long distances
in short periods of time such that it can be difficult to
obtain samples from all relevant hosts in the same place at
the same time. Thus, disease dynamics and spillover risk
are highly variable in space and time. Second, data on wild-
life distributions tend to be sparse and sampled at a coarse
spatial and temporal scale, while we would often like to
know risk to agricultural producers or people at a much
finer scale. This issue was even more difficult in the GsGD
HPAIV case study where the full scope of competent reser-
voir species remains poorly understood, and species-level
differences in transmission potential and contact rates of
reservoir species with poultry are not well known. Third,
one might expect that the distribution and density of agricul-
tural species is more well known than their wildlife
counterparts; however, this information is often protected
owing to privacy concerns. Finally, inconsistencies in data
reporting (e.g. omission of species-level information, lack of
clarity in measurement error) are another common challenge.

Hierarchical Bayesian approaches are an obvious way to
synthesize multiple datasets and propagate uncertainties,
and have been extended to dynamical spatio-temporal
models [47]. However, the inclusion of many different likeli-
hoods and datasets can be challenging to implement and fit
depending on system-specific data features. Often, we will
desire risk assessments at the finest resolution and broadest
scale possible, but this will be limited by both the available
data and computational demands. Even with improvements
in computing speeds, researchers may still need to make com-
promises on spatio-temporal resolution, extent and how
uncertainty is characterized. Statistical inference on high-
resolution spatio-temporal systems is challenging, especially
when mechanistic, science-based models are used. Multi-
resolution approaches have shown promise in some fields,
with, for example, homogenization (harmonic averaging
over multiple scales) providing a computationally efficient
approach to ecological diffusion [48,49]. Another approach
to approximate inference is to replace a computationally
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challenging likelihood (i.e. the likelihood of observed sero-
prevalence data which depends on a mechanistic spatial
SIR model which must be solved numerically) with an emu-
lated likelihood, where the true process is approximated by a
nonlinear, flexible statistical or machine learning model for
the process [50].

The challenges listed above lead us to several suggestions
for future work. Restif et al. [51] nicely outline how models
can be used to guide data collection, hone hypotheses and
provide a nexus for multidisciplinary collaboration. Model
predictions are only as good as the data we collect. In our
case studies, data collection largely preceded the mathemat-
ical model specification. However, our initial mechanistic
models can now highlight data gaps and we can iteratively
improve both the field data collection and the model
design. Modelling results may suggest where resources
could be allocated to more efficiently reduce our prediction
uncertainty and target layers of the spillover process that
are most influential in prediction and less costly to sample.
Improving predictions of disease spillover will require an
iterative approach; however, model-guided fieldwork has

not been implemented very often [52]. Consistent relation-
ships across disciplines, agencies and stakeholders, and
long-term funding of team efforts are needed to provide
relevant data for modelling spillover risk. Mechanistic model-
ling approaches can determine more efficient and feasible
data collection of the most important parameters.
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Figure S1. Directed acyclic graph of a statistical model of the donor host population size, 5, in spatial
regions r and time periods t. Blue areas are the observed data, while pink areas are latent and estimated.
The observed count data, c, at a different spatial scale, g, and time period u are dependent on the host
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density as well as the sightability ®. Host movement, w, into a region j from all of its neighbors | affects
the host population distribution over time as well as the observed movement data m for individuals #,
which may also be collected at a different temporal resolution.
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Figure S2. The relationship between the number of observed brucellosis spillover events in livestock
herds from 2001 to 2018 and the predicted number of elk transmission events per year in areas potentially
occupied by livestock. Each point is a different elk management unit in Montana and Wyoming.
Predictions are based upon ([1] and [2]).
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