238 research outputs found

    An in vitro method to study the effects of hematopoietic regulators during immune and blood cell development

    Get PDF
    In adults, hematopoiesis occurs in bone marrow (BM) through a complex process with differentiation of hematopoietic stem cells (HSCs) to immune and blood cells. Human HSCs and their progenitors express CD34. Methods on hematopoietic regulation are presented to show the effects of the chemokine, stromal-derived growth factor (SDF)-1Î and the neuropeptide, substance P (SP). SDF-1Î production in BM stroma causes interactions with HSCs, thereby retaining the HSCs in regions close to the endosteum, at low oxygen. Small changes in SDF-1Î levels stimulate HSC functions through direct and indirect mechanisms. The indirect method occurs by SP production, which stimulates CD34+ cells, supported by ligand-binding studies, long-term culture-initiating cell assays for HSC functions, and clonogenic assays for myeloid progenitors. These methods can be applied to study other hematopoietic regulators

    Substance P Is a Mechanoresponsive, Autocrine Regulator of Human Tenocyte Proliferation

    Get PDF
    It has been hypothesised that substance P (SP) may be produced by primary fibroblastic tendon cells (tenocytes), and that this production, together with the widespread distribution of the neurokinin-1 receptor (NK-1 R) in tendon tissue, could play an important role in the development of tendinopathy, a condition of chronic tendon pain and thickening. The aim of this study was to examine the possibility of endogenous SP production and the expression of NK-1 R by human tenocytes. Because tendinopathy is related to overload, and because the predominant tissue pathology (tendinosis) underlying early tendinopathy is characterized by tenocyte hypercellularity, the production of SP in response to loading/strain and the effects of exogenously administered SP on tenocyte proliferation were also studied. A cell culture model of primary human tendon cells was used. The vast majority of tendon cells were immunopositive for the tenocyte/fibroblast markers tenomodulin and vimentin, and immunocytochemical counterstaining revealed that positive immunoreactions for SP and NK-1 R were seen in a majority of these cells. Gene expression analyses showed that mechanical loading (strain) of tendon cell cultures using the FlexCell© technique significantly increased the mRNA levels of SP, whereas the expression of NK-1 R mRNA decreased in loaded as compared to unloaded tendon cells. Reduced NK-1 R protein was also observed, using Western blot, after exogenously administered SP at a concentration of 10−7 M. SP exposure furthermore resulted in increased cell metabolism, increased cell viability, and increased cell proliferation, all of which were found to be specifically mediated via the NK-1 R; this in turn involving a common mitogenic cell signalling pathway, namely phosphorylation of ERK1/2. This study indicates that SP, produced by tenocytes in response to mechanical loading, may regulate proliferation through an autocrine loop involving the NK-1 R

    Breast Cancer Biology: The Multifaceted Roles of Mesenchymal Stem Cells

    Get PDF
    Recent upsurge in the interest of breast cancer metastasis is partly attributed to the discovery of novel, yet unclear, mechanisms of breast cancer interaction with sites of distant metastasis such as the bone marrow microenvironment. In this review, we discuss the significance of the interactions between breast cancer cells and cells of the bone marrow. This is a subject of intense research studies aim to provide new methods of treatments and perhaps the identification of new drug targets. This review also discusses the role of inflammation and the bimodal function of the transforming growth factor-β signaling pathway in the process of tumorigenesis. We bring attention to future prospects in breast cancer research, including the role of microRNAs in cancer quiescence in the bone marrow and the application of microRNAs to basic science discoveries in oncology. Finally, we discuss the cancer stem cell hypothesis, which is not a new idea, but has resurged with investigative questions

    The Microenvironmental Effect in the Progression, Metastasis, and Dormancy of Breast Cancer: A Model System within Bone Marrow

    Get PDF
    Despite diagnostic advances, breast cancer remains the most prevalent cancer among women in the United States. The armamentarium of treatment options for metastatic disease is limited and mostly ineffective with regards to eradicating cancer. However, there have been novel findings in the recent literature that substantiate the function of the microenvironment in breast cancer progression and the support of metastasis to tertiary sites such as bone marrow. The uncovered significance of the microenvironment in the pathophysiology of breast cancer metastasis has served to challenge previously widespread theories and introduce new perspectives for the future research to eradicate breast cancer. This paper delineates the current understanding of the molecular mechanisms involved in the interactions between breast cancer cells and the microenvironment in progression, metastasis, and dormancy. The information, in addition to other mechanisms described in bone marrow, is discussed in the paper

    An in vitro method to select malignant cells from surgical biopsies of breast cancer patients

    Get PDF
    To date, breast cancer (BC) research is mainly studied with cell lines. These cells were passaged multiple times, acquiring phenotypes, additional mutations and epigenetic changes. These changes make the passaged cell lines different from the original malignancy. Thus cell lines, although useful as models could be improved with additional studies with primary BC. It is difficult to obtain malignant cells from breast tissues without contamination from surrounding healthy cells. Selection and expansion of malignant cells from surgical tissues have proved to be daunting tasks. This study describes a reliable and reproducible method for isolating and expanding malignant cells from surgical breast tissues. The method uses co-cultures with BM stroma to select for the cancer cells while the healthy cells undergo rapid cell death. Studies are described to show the cloning efficiencies and sensitivity of the method using surgical samples of varying sizes, different stages of BC, and samples from needle biopsies

    Early Events in Xenograft Development from the Human Embryonic Stem Cell Line HS181 - Resemblance with an Initial Multiple Epiblast Formation

    Get PDF
    Xenografting is widely used for assessing in vivo pluripotency of human stem cell populations. Here, we report on early to late events in the development of mature experimental teratoma from a well-characterized human embryonic stem cell (HESC) line, HS181. The results show an embryonic process, increasingly chaotic. Active proliferation of the stem cell derived cellular progeny was detected already at day 5, and characterized by the appearance of multiple sites of engraftment, with structures of single or pseudostratified columnar epithelium surrounding small cavities. The striking histological resemblance to developing embryonic ectoderm, and the formation of epiblast-like structures was supported by the expression of the markers OCT4, NANOG, SSEA-4 and KLF4, but a lack of REX1. The early neural marker NESTIN was uniformly expressed, while markers linked to gastrulation, such as BMP-4, NODAL or BRACHYURY were not detected. Thus, observations on day 5 indicated differentiation comparable to the most early transient cell populations in human post implantation development. Confirming and expanding on previous findings from HS181 xenografts, these early events were followed by an increasingly chaotic development, incorporated in the formation of a benign teratoma with complex embryonic components. In the mature HS181 teratomas not all types of organs/tissues were detected, indicating a restricted differentiation, and a lack of adequate spatial developmental cues during the further teratoma formation. Uniquely, a kinetic alignment of rare complex structures was made to human embryos at diagnosed gestation stages, showing minor kinetic deviations between HS181 teratoma and the human counterpart

    Cloned, CD117 Selected Human Amniotic Fluid Stem Cells Are Capable of Modulating the Immune Response

    Get PDF
    Amniotic fluid stem (AFS) cells are broadly multipotent, can be expanded extensively in culture, are not tumorigenic and can be readily cryopreserved for cell banking. Mesenchymal stem cells (MSC) show immunomodulatory activity and secrete a wide spectrum of cytokines and chemokines that suppress inflammatory responses, block mixed lymphocyte reactions (MLR) and other immune reactions, and have proven therapeutic against conditions such as graft-versus-host disease. AFS cells resemble MSCs in many respects including surface marker expression and differentiation potential. We therefore hypothesized that AFS cells may exhibit similar immunomodulatory capabilities. We present data to demonstrate that direct contact with AFS cells inhibits lymphocyte activation. In addition, we show that cell-free supernatants derived from AFS cells primed with total blood monocytes or IL-1β, a cytokine released by monocytes and essential in mediation of the inflammatory response, also inhibited lymphocyte activation. Further investigation of AFS cell-free supernatants by protein array revealed secretion of multiple factors in common with MSCs that are known to be involved in immune regulation including growth related oncogene (GRO) and monocyte chemotactic protein (MCP) family members as well as interleukin-6 (IL-6). AFS cells activated by PBMCs released several additional cytokines as compared to BM-MSCs, including macrophage inflammatory protein-3α (MIP-3α), MIP-1α and Activin. AFS cells also released higher levels of MCP-1 and lower levels of MCP-2 compared to BM-MSCs in response to IL-1β activation. This suggests that there may be some AFS-specific mechanisms of inhibition of lymphocyte activation. Our results indicate that AFS cells are able to suppress inflammatory responses in vitro and that soluble factors are an essential component in the communication between lymphocytes and AFS cells. Their extensive self-renewal capacity, possibility for banking and absence of tumorigenicity may make AFS cells a superior source of stable, well characterized “off the shelf” immunomodulatory cells for a variety of immunotherapies

    Immunoglobulin Free Light Chains Are Increased in Hypersensitivity Pneumonitis and Idiopathic Pulmonary Fibrosis

    Get PDF
    BACKGROUND: Idiopathic pulmonary fibrosis (IPF), a devastating lung disorder of unknown aetiology, and chronic hypersensitivity pneumonitis (HP), a disease provoked by an immunopathologic reaction to inhaled antigens, are two common interstitial lung diseases with uncertain pathogenic mechanisms. Previously, we have shown in other upper and lower airway diseases that immunoglobulin free light chains (FLCs) are increased and may be involved in initiating a local inflammation. In this study we explored if such a mechanism may also apply to HP and IPF. METHODS: In this study we examined the presence of FLC in serum and BAL fluid from 21 IPF and 22 HP patients and controls. IgG, IgE and tryptase concentrations were measured in BAL fluid only. The presence of FLCs, plasma cells, B cells and mast cells in lung tissue of 3 HP and 3 IPF patients and 1 control was analyzed using immunohistochemistry. RESULTS: FLC concentrations in serum and BAL fluid were increased in IPF and HP patients as compared to control subjects. IgG concentrations were only increased in HP patients, whereas IgE concentrations were comparable to controls in both patient groups. FLC-positive cells, B cells, plasma cells, and large numbers of activated mast cells were all detected in the lungs of HP and IPF patients, not in control lung. CONCLUSION: These results show that FLC concentrations are increased in serum and BAL fluid of IPF and HP patients and that FLCs are present within affected lung tissue. This suggests that FLCs may be involved in mediating pathology in both diseases
    corecore