848 research outputs found

    Time Delay Induced Death in Coupled Limit Cycle Oscillators

    Get PDF
    We investigate the dynamical behaviour of two limit cycle oscillators that interact with each other via time delayed coupling and find that time delay can lead to amplitude death of the oscillators even if they have the same frequency. We demonstrate that this novel regime of amplitude "death" also exists for large collections of coupled identical oscillators and provide quantitative measures of this death region in the parameter space of coupling strength and time delay. Its implication for certain biological and physical applications is also pointed out.Comment: 4 aps formatted revtex pages; 3 figures; to be published in Phys. Rev. Let

    Mixed Chelate Complexes of Manganese(III)

    Get PDF
    751-75

    Reaction of Bis-β-diketonates of Zn(II) with Thiourea

    Get PDF
    535-53

    Experimental Evidence of Time Delay Induced Death in Coupled Limit Cycle Oscillators

    Get PDF
    Experimental observations of time delay induced amplitude death in a pair of coupled nonlinear electronic circuits that are individually capable of exhibiting limit cycle oscillations are described. In particular, the existence of multiply connected death islands in the parameter space of the coupling strength and the time delay parameter for coupled identical oscillators is established. The existence of such regions was predicted earlier on theoretical grounds in [Phys. Rev. Lett. 80, 5109 (1998); Physica 129D, 15 (1999)]. The experiments also reveal the occurrence of multiple frequency states, frequency suppression of oscillations with increased time delay and the onset of both in-phase and anti-phase collective oscillations.Comment: 4 aps formatted RevTeX pages; 6 figures; to appear in Phys. Rev. Let

    Reaction of Bis(diethyl dithiocarbamato)nickel(II) with 4-Methyl- & 4-Vinyl-pyridines

    Get PDF
    745-74

    Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles

    No full text
    International audienceMeasurements of the vertical distribution of aerosol properties provide essential information for generating more accurate model estimates of radiative forcing and atmospheric heating rates compared with employing remotely sensed column averaged properties. A month long campaign over the Indian Ocean during March 2006 investigated the interaction of aerosol, clouds, and radiative effects. Routine vertical profiles of aerosol and water vapor were determined using autonomous unmanned aerial vehicles equipped with miniaturized instruments. Comparisons of these airborne instruments with established ground-based instruments and in aircraft-to-aircraft comparisons demonstrated an agreement within 10%. Aerosol absorption optical depths measured directly using the unmanned aircraft differed from columnar AERONET sun-photometer results by only 20%. Measurements of total particle concentration, particle size distributions, aerosol absorption and black carbon concentrations are presented along with the trade wind thermodynamic structure from the surface to 3000 m above sea level. Early March revealed a well-mixed layer up to the cloud base at 500 m above mean seal level (m a.s.l.), followed by a decrease of aerosol concentrations with altitude. The second half of March saw the arrival of a high altitude plume existing above the mixed layer that originated from a continental source and increased aerosol concentrations by more than tenfold, yet the surface air mass showed little change in aerosol concentrations and was still predominantly influenced by marine sources. Black carbon concentrations at 1500 m above sea level increased from 70 ng/m³ to more than 800 ng/m³ with the arrival of this polluted plume. The absorption aerosol optical depth increased from as low as 0.005 to as much as 0.035 over the same period. The spectral dependence of the aerosol absorption revealed an absorption Angstrom exponent of 1.0, which is typical of an aerosol with most of its absorption attributed to black carbon and generally indicates the absorbing component originated from fossil fuel sources and other high-temperature combustion sources. The results indicate that surface measurements do not represent the aerosol properties within the elevated layers, especially if these layers are influenced by long range transport

    Deep bore well water level fluctuations in the Koyna region, India: the presence of a low order dynamical system in a seismically active environment

    Get PDF
    Water level fluctuations in deep bore wells in the vicinity of seismically active Koyna region in western India provides an opportunity to understand the causative mechanism underlying reservoir-triggered earthquakes. As the crustal porous rocks behave nonlinearly, their characteristics can be obtained by analysing water level fluctuations, which reflect an integrated response of the medium. A Fractal dimension is one such measure of nonlinear characteristics of porous rock as observed in water level data from the Koyna region. It is inferred in our study that a low nonlinear dynamical system with three variables can predict the water level fluctuations in bore wells
    corecore