305 research outputs found

    Na-K-Cl Cotransporter-1 as a Regulator of Manganese-induced Astrocyte Swelling

    Get PDF
    Astrocyte swelling leads to brain edema, intracranial pressure, brain herniation and acute liver failure (fulminant hepatic failure) which is the major cause of death in this condition. Manganese has been strongly implicated as an important factor in astrocyte swelling. Manganese in excess is neurotoxic and causes a CNS disorder that resembles  Parkinson¡¦s disease (manganism). Manganese highly accumulates in astrocytes, which renders these cells more vulnerable to its toxicity. In addition to manganism, increased brain levels of manganese have been found in hepatic encephalopathy. Manganese is known to cause cellswelling in cultured astrocytes, although the means by which this occurs has not been fully elucidated. A disturbance in one or more of these systems may result in loss of ion homeostasis and cell swelling. In particular, activation of the Na-K-Cl cotransporter-1 (NKCC1) has been shown to be involved in cell swelling in several neurological disorders.We therefore examined the effect of manganese on NKCC activity and its potential role in the swelling of astrocytes. Cultured astrocytes were exposed to manganese (50 µM), and NKCC activity was measured. Manganese increased NKCC activity at 24 h. Inhibition of this  activity by bumetanide diminished manganese-induced astrocyte swelling.  Manganese (Mn) also increased total as well as phosphorylated NKCC1. These results suggest that activation of NKCC1 is an important factor in the mediation of astrocyte swelling by manganese and that such activation appears to be mediated by NKCC1 abundance

    DRENCH: A Semi-Distributed Resource Management Framework for NFV based Service Function Chaining

    Get PDF
    As networks grow in scale and complexity, the use of Network Function Virtualization (NFV) and the ability to dynamically instantiate network function instances (NFls) allow us to scale out the network's capabilities in response to demand. At the same time, an increasing number of computing resources, deployed closer to users, as well as network equipment are now capable of performing general-purpose computation for NFV. However, NFV management in the presence of Service Function Chaining (SFC) for arbitrary topologies is a challenging task. In this work we argue for the necessity of an algorithmic resource managementframework that captures the involved tradeoffs of NFls minimum workload, load balancing, and flow path stretch. We introduce DRENCH as a low complexity NFV and flow steering management framework. In DRENCH an NFV market is considered where a centralised SDN controller acts as market orchestrator of NFV nodes. Through competition, NFV nodes make flow steering and NFl instantiation/consolidation decisions. DRENCH design enables third party NFV nodes participation while it can coexist with other NFV management solutions. DRENCH orchestrator parameterisation strikes the right balance between path stretch and NFl load balancing, resulting in significantly lower Flow Completion Times, up to 1Ox less, in some cases

    Microbiological, histological, immunological, and toxin response to antibiotic treatment in the mouse model of Mycobacterium ulcerans disease.

    Get PDF
    Mycobacterium ulcerans infection causes a neglected tropical disease known as Buruli ulcer that is now found in poor rural areas of West Africa in numbers that sometimes exceed those reported for another significant mycobacterial disease, leprosy, caused by M. leprae. Unique among mycobacterial diseases, M. ulcerans produces a plasmid-encoded toxin called mycolactone (ML), which is the principal virulence factor and destroys fat cells in subcutaneous tissue. Disease is typically first manifested by the appearance of a nodule that eventually ulcerates and the lesions may continue to spread over limbs or occasionally the trunk. The current standard treatment is 8 weeks of daily rifampin and injections of streptomycin (RS). The treatment kills bacilli and wounds gradually heal. Whether RS treatment actually stops mycolactone production before killing bacilli has been suggested by histopathological analyses of patient lesions. Using a mouse footpad model of M. ulcerans infection where the time of infection and development of lesions can be followed in a controlled manner before and after antibiotic treatment, we have evaluated the progress of infection by assessing bacterial numbers, mycolactone production, the immune response, and lesion histopathology at regular intervals after infection and after antibiotic therapy. We found that RS treatment rapidly reduced gross lesions, bacterial numbers, and ML production as assessed by cytotoxicity assays and mass spectrometric analysis. Histopathological analysis revealed that RS treatment maintained the association of the bacilli with (or within) host cells where they were destroyed whereas lack of treatment resulted in extracellular infection, destruction of host cells, and ultimately lesion ulceration. We propose that RS treatment promotes healing in the host by blocking mycolactone production, which favors the survival of host cells, and by killing M. ulcerans bacilli

    Management of intracranial tuberculous mass lesions: How long should we treat for? [version 2; peer review: 1 approved, 2 approved with reservations]

    Get PDF
    Tuberculous intracranial mass lesions are common in settings with high tuberculosis (TB) incidence and HIV prevalence. The diagnosis of such lesions, which include tuberculoma and tuberculous abscesses, is often presumptive and based on radiological features, supportive evidence of TB elsewhere and response to TB treatment. However, the treatment response is unpredictable, with lesions frequently enlarging paradoxically or persisting for many years despite appropriate TB treatment and corticosteroid therapy. Most international guidelines recommend a 9-12 month course of TB treatment for central nervous system TB when the infecting Mycobacterium tuberculosis (M.tb) strain is sensitive to first-line drugs. However, there is variation in opinion and practice with respect to the duration of TB treatment in patients with tuberculomas or tuberculous abscesses. A major reason for this is the lack of prospective clinical trial evidence. Some experts suggest continuing treatment until radiological resolution of enhancing lesions has been achieved, but this may unnecessarily expose patients to prolonged periods of potentially toxic drugs. It is currently unknown whether persistent radiological enhancement of intracranial tuberculomas after 9-12 months of treatment represents active disease, inflammatory response in a sterilized lesion or merely revascularization. The consequences of stopping TB treatment prior to resolution of lesional enhancement have rarely been explored. These important issues were discussed at the 3 International Tuberculous Meningitis Consortium meeting. Most clinicians were of the opinion that continued enhancement does not necessarily represent treatment failure and that prolonged TB therapy was not warranted in patients presumably infected with M.tb strains susceptible to first-line drugs. In this manuscript we highlight current medical treatment practices, benefits and disadvantages of different TB treatment durations and the need for evidence-based guidelines regarding the treatment duration of patients with intracranial tuberculous mass lesions

    The current global situation for tuberculous meningitis: Epidemiology, diagnostics, treatment and outcomes

    Get PDF
    Tuberculous meningitis (TBM) results from dissemination of M. tuberculosis to the cerebrospinal fluid (CSF) and meninges. Ischaemia, hydrocephalus and raised intracranial pressure frequently result, leading to extensive brain injury and neurodisability. The global burden of TBM is unclear and it is likely that many cases are undiagnosed, with many treated cases unreported. Untreated, TBM is uniformly fatal, and even if treated, mortality and morbidity are high. Young age and human immunodeficiency virus (HIV) infection are potent risk factors for TBM, while Bacillus Calmette-Guérin (BCG) vaccination is protective, particularly in young children. Diagnosis of TBM usually relies on characteristic clinical symptoms and signs, together with consistent neuroimaging and CSF parameters. The ability to confirm the TBM diagnosis via CSF isolation of M. tuberculosis depends on the type of diagnostic tests available. In most cases, the diagnosis remains unconfirmed. GeneXpert MTB/RIF and the next generation Xpert Ultra offer improved sensitivity and rapid turnaround times, and while roll-out has scaled up, availability remains limited. Many locations rely only on acid fast bacilli smear, which is insensitive. Treatment regimens for TBM are based on evidence for pulmonary tuberculosis treatment, with little consideration to CSF penetration or mode of drug action required. The World Health Organization recommends a 12-month treatment course, although data on which to base this duration is lacking. New treatment regimens and drug dosages are under evaluation, with much higher dosages of rifampicin and the inclusion of fluoroquinolones and linezolid identified as promising innovations. The inclusion of corticosteroids at the start of treatment has been demonstrated to reduce mortality in HIV-negative individuals but whether they are universally beneficial is unclear. Other host-directed therapies show promise but evidence for widespread use is lacking. Finally, the management of TBM within health systems is sub-optimal, with drop-offs at every stage in the care cascade

    Knowledge gaps and research priorities in tuberculous meningitis [version 1; peer review: 3 approved]

    Get PDF
    Tuberculous meningitis (TBM) is the most severe and disabling form of tuberculosis (TB), accounting for around 1-5% of the global TB caseload, with mortality of approximately 20% in children and up to 60% in persons co-infected with human immunodeficiency virus even in those treated. Relatively few centres of excellence in TBM research exist and the field would therefore benefit from greater co-ordination, advocacy, collaboration and early data sharing. To this end, in 2009, 2015 and 2019 we convened the TBM International Research Consortium, bringing together approximately 50 researchers from five continents. The most recent meeting took place on 1st and 2nd March 2019 in Lucknow, India. During the meeting, researchers and clinicians presented updates in their areas of expertise, and additionally presented on the knowledge gaps and research priorities in that field. Discussion during the meeting was followed by the development, by a core writing group, of a synthesis of knowledge gaps and research priorities within seven domains, namely epidemiology, pathogenesis, diagnosis, antimicrobial therapy, host-directed therapy, critical care and implementation science. These were circulated to the whole consortium for written input and feedback. Further cycles of discussion between the writing group took place to arrive at a consensus series of priorities. This article summarises the consensus reached by the consortium concerning the unmet needs and priorities for future research for this neglected and often fatal disease

    Evaluation of Functional Erythropoietin Receptor Status in Skeletal Muscle In Vivo: Acute and Prolonged Studies in Healthy Human Subjects

    Get PDF
    BACKGROUND: Erythropoietin receptors have been identified in human skeletal muscle tissue, but downstream signal transduction has not been investigated. We therefore studied in vivo effects of systemic erythropoietin exposure in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS: The protocols involved 1) acute effects of a single bolus injection of erythropoietin followed by consecutive muscle biopsies for 1-10 hours, and 2) a separate study with prolonged administration for 16 days with biopsies obtained before and after. The presence of erythropoietin receptors in muscle tissue as well as activation of Epo signalling pathways (STAT5, MAPK, Akt, IKK) were analysed by western blotting. Changes in muscle protein profiles after prolonged erythropoietin treatment were evaluated by 2D gel-electrophoresis and mass spectrometry. The presence of the erythropoietin receptor in skeletal muscle was confirmed, by the M20 but not the C20 antibody. However, no significant changes in phosphorylation of the Epo-R, STAT5, MAPK, Akt, Lyn, IKK, and p70S6K after erythropoietin administration were detected. The level of 8 protein spots were significantly altered after 16 days of rHuEpo treatment; one isoform of myosin light chain 3 and one of desmin/actin were decreased, while three isoforms of creatine kinase and two of glyceraldehyd-3-phosphate dehydrogenase were increased. CONCLUSIONS/SIGNIFICANCE: Acute exposure to recombinant human erythropoietin is not associated by detectable activation of the Epo-R or downstream signalling targets in human skeletal muscle in the resting situation, whereas more prolonged exposure induces significant changes in the skeletal muscle proteome. The absence of functional Epo receptor activity in human skeletal muscle indicates that the long-term effects are indirect and probably related to an increased oxidative capacity in this tissue

    MARCO, TLR2, and CD14 Are Required for Macrophage Cytokine Responses to Mycobacterial Trehalose Dimycolate and Mycobacterium tuberculosis

    Get PDF
    Virtually all of the elements of Mycobacterium tuberculosis (Mtb) pathogenesis, including pro-inflammatory cytokine production, granuloma formation, cachexia, and mortality, can be induced by its predominant cell wall glycolipid, trehalose 6,6′-dimycolate (TDM/cord factor). TDM mediates these potent inflammatory responses via interactions with macrophages both in vitro and in vivo in a myeloid differentiation factor 88 (MyD88)-dependent manner via phosphorylation of the mitogen activated protein kinases (MAPKs), implying involvement of toll-like receptors (TLRs). However, specific TLRs or binding receptors for TDM have yet to be identified. Herein, we demonstrate that the macrophage receptor with collagenous structure (MARCO), a class A scavenger receptor, is utilized preferentially to “tether” TDM to the macrophage and to activate the TLR2 signaling pathway. TDM-induced signaling, as measured by a nuclear factor-kappa B (NF-κB)-luciferase reporter assay, required MARCO in addition to TLR2 and CD14. MARCO was used preferentially over the highly homologous scavenger receptor class A (SRA), which required TLR2 and TLR4, as well as their respective accessory molecules, in order for a slight increase in NF-κB signaling to occur. Consistent with these observations, macrophages from MARCO−/− or MARCO−/−SRA−/− mice are defective in activation of extracellular signal-related kinase 1/2 (ERK1/2) and subsequent pro-inflammatory cytokine production in response to TDM. These results show that MARCO-expressing macrophages secrete pro-inflammatory cytokines in response to TDM by cooperation between MARCO and TLR2/CD14, whereas other macrophage subtypes (e.g. bone marrow–derived) may rely somewhat less effectively on SRA, TLR2/CD14, and TLR4/MD2. Macrophages from MARCO−/− mice also produce markedly lower levels of pro-inflammatory cytokines in response to infection with virulent Mtb. These observations identify the scavenger receptors as essential binding receptors for TDM, explain the differential response to TDM of various macrophage populations, which differ in their expression of the scavenger receptors, and identify MARCO as a novel component required for TLR signaling
    corecore